Abstract:
A method for manufacturing an anode for a cable-type secondary battery, includes forming a lithium-containing electrode layer on the outer surface of a wire-type current collector; and surrounding the outer surface of the lithium-containing electrode layer with a substrate for forming a polymer layer spirally, and pressing the outside of the substrate for forming a polymer layer to form a polymer layer on the lithium-containing electrode layer, wherein the polymer layer includes a hydrophobic polymer, an ion conductive polymer, and a binder for binding the hydrophobic polymer and the ion conductive polymer with each other. An anode obtained from the method and a cable-type secondary battery including the anode are also provided.
Abstract:
The present invention relates to a sheet-type electrode for a secondary battery, a method for manufacturing the same, a secondary battery comprising the same, and a cable-type secondary battery, the electrode comprising: a sheet-type electrode stacked body comprising a collector, an electrode active material formed on a surface of the collector, and a porous first support layer formed on the electrode active material; and a sealing layer formed so as to surround the entire side surface of the electrode stacked body.
Abstract:
Provided is a packaging for a flexible secondary battery, including: a first polymer resin layer; a barrier layer formed on the first polymer resin layer for interrupting moisture and gases; a parylene layer including parylene on at least one surface of the barrier layer; and a second polymer resin layer formed on the barrier layer, wherein the parylene layer has a thickness of 0.1-2.5 μm. A flexible secondary battery including the packaging is also provided.
Abstract:
A lithium metal electrode includes a current collector having a surface irregularity structure, a lithium metal layer disposed outside of the surface irregularity structure except the uppermost surface of the surface irregularity structure in the current collector, an electron-insulating protective layer disposed outside of the lithium metal layer, and a lithium ion-isolating layer disposed (1) on the uppermost surface of the surface irregularity structure of the current collector, or (2) on the uppermost surface of the surface irregularity structure of the current collector, on the uppermost surface of the lithium metal layer, and on the uppermost surface of the electron-insulating protective layer, wherein the electron-insulating protective layer includes a non-porous layer transporting lithium ions and having no pores, and a polymer porous layer disposed outside thereof. A lithium secondary battery and flexible secondary battery including the lithium metal electrode are also provided.
Abstract:
Disclosed is a multilayer cable-type secondary battery including a first electrode assembly comprising one or more first inner electrodes and a sheet-type first separation layer-outer electrode complex spirally wound to surround outer surfaces of the first inner electrodes, a separation layer surrounding the first electrode assembly to prevent short circuit of the electrodes, and a second electrode assembly comprising one or more second inner electrodes surrounding an outer surface of the separation layer and a sheet-type second separation layer-outer electrode complex spirally wound to surround outer surfaces of the second inner electrodes.
Abstract:
A flexible secondary battery includes: a first electrode including a first electrode current collector extended longitudinally, a first electrode active material layer formed on the outside of the first electrode current collector, and a first insulation coating layer formed on the outside of the first electrode active material layer; and a second electrode including a second electrode current collector extended longitudinally, a second electrode active material layer formed on the outside of the second electrode current collector, and a second insulation coating layer formed on the outside of the second electrode active material layer, wherein the first electrode and the second electrode are wound in such a manner that they are disposed alternately in contact with each other.
Abstract:
The present disclosure provides a cable-type secondary battery, which has a packaging formed skin-tightly on the outer surface of an electrode assembly to improve flexibility significantly even when external force is applied to the cable-type secondary battery, and to prevent a decrease in capacity of the battery, thereby providing improved cycle life characteristics. The cable-type secondary battery comprises an electrode assembly comprising an electrode assembly comprising an inner electrode, a separator layer formed to surround the inner electrode, and an outer electrode formed to surround the outer surface of the separator layer; and a packaging surrounding the electrode assembly, wherein the packaging surrounds the top surface and the bottom surface of the electrode and a portion of the packaging is overlapped at an end thereof and sealed by heat compression, and the overlapped part is folded along the perimeter of the packaging to be a wing portion.
Abstract:
The present invention relates to a sheet-type electrode for a secondary battery, a method for manufacturing the same, a secondary battery comprising the same, and a cable-type secondary battery, the electrode comprising: a sheet-type electrode stacked body comprising a collector, an electrode active material formed on a surface of the collector, and a porous first support layer formed on the electrode active material; and a sealing layer formed so as to surround the entire side surface of the electrode stacked body.
Abstract:
Provided is a sheet type separation layer-electrode composite including a current collector, an electrode active material layer formed on one surface of the current collector, and a porous first support layer formed on an upper surface of the electrode active material layer, and a secondary battery and a cable type secondary battery including the same.
Abstract:
A method for manufacturing a flexible battery includes the steps of: preparing an electrode current collector having a current collecting portion provided with at least one through-hole; carrying out electrospinning of electrode slurry including an electrode active material, a binder, a conductive material and a solvent on at least one surface of an edge of the current collecting portion and over the through-hole to form an electrode active material layer on at least one surface of the electrode current collector; and forming a battery provided with the electrode current collector having the electrode active material layer formed thereon as an electrode. A flexible battery obtained from the method is also provided.