Abstract:
A method for transmitting a Channel State Information (CSI) reporting at a user equipment (UE) in a wireless communication system is disclosed. The method includes transmitting a rank indicator (RI) and a first type precoding matrix indicator (PMI) to a base station (BS) according to a first CSI feedback type; transmitting a second type PMI to the BS according to a second CSI feedback type, wherein the RI and the first type PMI are jointly coded, and transmitted through a physical uplink control channel (PUCCH), wherein the RI and the second type PMI are not jointly coded, and transmitted through the PUCCH, wherein a transmission period of the first type PMI is different than a transmission period of the second type PMI, wherein the transmission period of the first type PMI is longer than the transmission period of the second type PMI, and wherein the RI is 2, 3 or 4 bits, and a size of the jointly coded RI and the first type PMI are 4 bits.
Abstract:
A method for transmitting a control signal, performed by a wireless device. The method according to one embodiment includes allocating resource elements (REs) for a control channel; and transmitting the control signal through the Res. Each RE in the REs for the control channel is associated with one out of two antenna ports. The two antenna ports are included in a plurality of antenna ports used for transmitting demodulation reference signals (DM RS).
Abstract:
A method of decoding a backhaul downlink signal is presented. A relay node (RN) receives a higher layer signal indicating a maximum transmission rank from a base station (BS), receives control information containing a resource allocation for downlink data through a relay control channel from the BS, demodulates the control information, and receives the downlink data through a data channel based on the control information. The control information is mapped to resource elements (REs) which do not overlap with user equipment-specific reference signal (URS) REs in a control region which is used for the relay control channel transmission of the BS. The URS REs are reserved REs for URSs according to the maximum transmission rank.
Abstract:
A wireless communication system is disclosed. A method and apparatus for allowing a user equipment (UE) to transmit uplink control information through a physical uplink shared channel (PUSCH) are disclosed. A method for allowing a UE to transmit uplink control information through a PUSCH in a wireless communication system includes receiving configuration information about a plurality of PUSCH feedback modes, identifying information indicating a specific PUSCH feedback mode for the PUSCH by using uplink allocation information for the PUSCH, and transmitting the uplink control information through the PUSCH in accordance with the specific PUSCH feedback mode
Abstract:
A method of transmitting a signal of a base station in a wireless communication system is provided. The method includes transmitting a first signal to the relay station through the transmission period in a subframe including a transmission period and a guard time for transmission/reception switching of a relay station, and transmitting a second signal to a macro user equipment through the guard time. Accordingly, a signal can be effectively transmitted in the wireless communication system employing the relay station.
Abstract:
A method of decoding a backhaul downlink signal of a relay node (RN). A higher layer signal indicating a maximum transmission rank is received from a base station (BS). Control information is received through a relay control channel from the BS. The control information is demodulated and mapped to resource elements (REs) which do not overlap with user equipment-specific reference signal (URS) REs in a control region which is used for the relay control channel transmission of the BS. The URS REs are reserved REs for URSs according to the maximum transmission rank. The control information is demodulated based on URSs transmitted by the BS on one fixed antenna port n, where n is a natural number.
Abstract:
A method of decoding a backhaul downlink signal of a relay node (RN), the method includes receiving a higher layer signal indicating a maximum transmission rank from a base station (BS), receiving control information through a relay control channel from the BS, and demodulating the control information, wherein the control information is mapped to resource elements which do not overlap with user equipment-specific reference signal resource elements (URS REs) in a control region which is used for the relay control channel transmission of the BS, the URS REs being reserved resource elements for user equipment-specific reference signals (URSs) according to the maximum transmission rank, and wherein the control information is demodulated based on user equipment-specific reference signals transmitted by the BS on one fixed antenna port n, where n is a natural number.
Abstract:
A method and device for a transmitting and receiving a signal from a relay station in a radio communication system is provided. The method includes: receiving offset time information from a base station; configuring a time difference between an access downlink transmission subframe that transmits an access downlink signal to a relay station terminal according to the offset time information and a backhaul downlink reception subframe that receives a backhaul downlink signal from the base station; transmitting a control signal from the access downlink transmission subframe to the relay station terminal; and receiving the backhaul downlink signal from the base station in the backhaul downlink reception subframe.
Abstract:
Provided are a method and an apparatus for a user equipment, which is allocated a plurality of serving cells, receiving acknowledgement/negative acknowledgement (ACK/NACK) in a wireless communication system. The method comprises: transmitting uplink data through a physical uplink shared channel (PUSCH); and receiving ACK/NACK with respect to the uplink through a physical hybrid-ARQ indicator channel (PHICH), wherein a serving cell that receives the ACK/NACK is selected from one or more serving cells, which the user equipment monitors to detect an uplink grant that schedules the PUSCH.
Abstract:
A method for transmitting data, which is performed by a user equipment (UE), includes receiving, through a first carrier, an uplink (UL) grant for a second carrier, and transmitting UL data through the second carrier according to the UL grant, wherein a UL-DL configuration of the first carrier and a UL-DL configuration of the second carrier are different from each other, and wherein the UL grant includes a time domain resource assignment indicating a starting time for transmitting the UL data.