Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
A method for forming a well providing access to a sensor pad includes patterning a first photoresist layer over a dielectric structure disposed over the sensor pad; etching a first access into the dielectric structure and over the sensor pad, the first access having a first characteristic diameter; patterning a second photoresist layer over the dielectric structure; and etching a second access over the dielectric structure and over the sensor pad. The second access has a second characteristic diameter. The first and second accesses overlapping. A diameter ratio of the first characteristic diameter to the second characteristic diameter is not greater than 0.7. The first access exposes the sensor pad. The second access has a bottom depth less than a bottom depth of the first access.
Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
In one implementation, a chemical sensor is described. The chemical sensor includes chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A dielectric material defines an opening extending to the upper surface of the floating gate conductor. A conductive sidewall spacer is on a sidewall of the opening and contacts the upper surface of the floating gate conductor.
Abstract:
In one implementation, a method for manufacturing a chemical sensor is described. The method includes forming a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A dielectric material is formed defining an opening extending to the upper surface of the floating gate conductor. A conductive material is formed within the opening and on an upper surface of the dielectric material. A fill material is formed on the conductive material. The fill material is used as a protect mask to remove the conductive material on the upper surface of the dielectric material. The fill material is then removed to expose remaining conductive material on a sidewall of the opening.