Abstract:
An electrostatic ion trap for mass analysis includes a first array of electrodes and a second array of electrodes, spaced from the first array of electrode. The first and second arrays of electrodes may be planar arrays formed by parallel strip electrodes or by concentric, circular or part-circular electrically conductive rings. The electrodes of the arrays are supplied with substantially the same pattern of voltage whereby the distribution of electrical potential in the space between the arrays is such as to reflect ions isochronously in a flight direction causing them to undergo periodic, oscillatory motion in the space, focused substantially mid-way between the arrays. Amplifier circuitry is used to detect image current having frequency components related to the mass-to-charge ratio of ions undergoing the periodic, oscillatory motion.
Abstract:
The present invention provides a mass spectrometer having an ion lens capable of transporting an ion having a large mass to charge ratio with a high level of ion-passing efficiency even under a low-vacuum atmosphere. In conventional atmospheric pressure ionization mass spectrometers or similar mass spectrometers, applying an excessively high voltage to the ion lens undesirably causes an electric discharge. Therefore, the passing efficiency for an ion having a large mass to charge ratio cannot be adequately improved, which leads to a poor detection sensitivity. To solve this problem, the mass spectrometer according to the present invention includes a voltage controller 21 that controls a variable radiofrequency (RF) voltage generator 24 so that both the amplitude and the frequency of the RF voltage applied to the lens electrodes of an ion lens 5 are changed according to the mass to charge ratio of an ion to be analyzed. This control enables the ion lens 5 to focus an ion and transport it to the subsequent stage with a high level of passing efficiency even in the case of analyzing an ion having a large mass to charge ratio. Thus, the detection sensitivity is improved. The aforementioned control is conducted on the basis of the control data stored in a voltage control data storage 22. These data are obtained in advance by a measurement of a sample containing a substance having a known mass to charge ratio, in which the intensity of the signal of an ion detector is maintained while the analysis conditions are changed.
Abstract:
An electrostatic ion trap for mass analysis includes a first array of electrodes and a second array of electrodes, spaced from the first array of electrode. The first and second arrays of electrodes may be planar arrays formed by parallel strip electrodes or by concentric, circular or part-circular electrically conductive rings. The electrodes of the arrays are supplied with substantially the same pattern of voltage whereby the distribution of electrical potential in the space between the arrays is such as to reflect ions isochronously in a flight direction causing them to undergo periodic, oscillatory motion in the space, focused substantially mid-way between the arrays. Amplifier circuitry is used to detect image current having frequency components related to the mass-to-charge ratio of ions undergoing the periodic, oscillatory motion.
Abstract:
A method for modifying the refractive index of ocular tissues. The method comprises irradiating select regions of ocular tissue with a visible or near-IR laser. The irradiation results in the formation of structures in the ocular tissue, characterized by a change in refractive index, and which exhibit little or no scattering loss.
Abstract:
The present invention relates generally to the field of ion storage and analysis, in particular to a linear ion trap mass analyzer comprised by multiple columnar electrodes. High frequency voltages are applied on at least one of the columnar electrodes to form ion confining space, which mainly consists of two-dimensional quadrupole electric radial trapping field, and there is at least one through slot for ion ejection in at least one direction perpendicular to the axis of the ion trap, wherein an AC electric field superposition is applied to invoke dipole excitation. Opposite to the through slot, there is an elongated electrode for field adjusting between two columnar electrodes or inside the slit of one of the columnar electrodes mentioned above. The potential on the elongated electrode for field adjusting is set as the sum of a portion of the high frequency voltage which applied on one adjacent columnar electrode and a DC offset, which can be adjusted freely. Through adjusting the portion of the high frequency potential and DC potential on this electrode, one or more objectives, including field optimization inside the ion trap as well as ion motion characteristics of resonant ejection, can be realized.
Abstract:
A video laryngoscope has a handle and a groove on one side of the handle. The groove is used for guiding a guide wire when the larynogoscope is placed in a patient's mouth. A video camera located near the end of the handle is used to view the area around the glottis. When the guide wire is properly positioned near the glottis, the upper part of the guide wire is disengaged from the groove so as to allow an endotracheal tube to be slipped over the guide wire and to be inserted into part of the trachea through the glottis. When the tube is properly inserted for intubation, the guide wire is removed from the tube. An illuminating light source such as an LED lamp can be installed at the end of the handle to provide illumination for the video camera.
Abstract:
The current invention involves a desorption corona beam ionization source/device for analyzing samples under atmospheric pressure without sample pretreatment. It includes a gas source, a gas flow tube, a gas flow heater, a metal tube, a DC power supply and a sample support/holder for placing the samples. A visible corona beam is formed at a sharply pointed tip at the exit of the metal tube when a stream of inert gas flows through the metal tube that is applied with a high DC voltage. The gas is heated for desorbing the analyte from solid samples and the desorbed species are ionized by the energized particles embedded in the corona beam. The ions formed are then transferred through an adjacent inlet into a mass spectrometer or other devices capable of analyzing ions. Visibility of the corona beam in the current invention greatly facilitates pinpointing a sampling area on the analyte and also makes profiling of sample surfaces possible.
Abstract:
A mass spectrometric analyzer and an analysis method based on the detection of ion image current are provided. The method in one embodiment includes using electrostatic reflectors or electrostatic deflectors to enable pulsed ions to move periodically for multiple times in the analyzer, forming time focusing in a portion of the ion flight region thereof, and forming an confined ion beam in space; enabling the ion beam to pass through multiple tubular image current detectors arranged in series along an axial direction of the ion beam periodically, using a low-noise electronic amplification device to detect image currents picked up by the multiple tubular detectors differentially, and using a data conversion method, such as a least square regression, to acquire a mass spectrum.
Abstract:
Stable and uniform distribution of gel beads or other particulate material, dispersed in a liquid medium can be obtained by including a density-reducing agent within the gel beads to provide the particle with a desired bulk density, for example a density close to that of the disperse liquid medium. Suitable density control can prevent migration due to gravity leading to settling in storage. Gel beads formulated with agar are suitable for use in cosmetics and for inclusion in cosmetics formulating processes which may employ modestly elevated temperatures. Attractive and novel cosmetics bead suspensions are described. Additional to cosmetics, pharmaceutical, foodstuff and other applications are disclosed. Examples of suitable density-reducing agents include very low density hollow polymeric microspheres and temperature-sensitive expandable thermoplastic microspheres.
Abstract:
A method of introducing ions into an ion trap and an ion storage apparatus are described. Introduction means are used to introduce first ions into an ion trap through an entrance aperture to the ion trap. An operating condition of the introduction means is adjusted to cause second ions, of different polarity to the first ions to be introduced into the ion trap through the same entrance aperture.