Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a reversed pattern in a substrate. A resist on a substrate is exposed and developed to form a pattern therein, the patterned resist having a first polarity. The polarity of the patterned resist is reversed to a second polarity, and a reversal film is formed over the patterned resist having the second polarity. The patterned resist having the second polarity is removed, forming a pattern in the reversal film. The pattern in the reversal film is then transferred to the substrate. Additional methods of forming a reversed pattern in a substrate are disclosed, as is a semiconductor structure formed during the methods.
Abstract:
Methods of forming semiconductor devices and features in semiconductor device structures include conducting an anti-spacer process to remove portions of a first mask material to form first openings extending in a first direction. Another anti-spacer process is conducted to remove portions of the first mask material to form second openings extending in a second direction at an angle to the first direction. Portions of the second mask material underlying the first mask material at intersections of the first openings and second openings are removed to form holes in the second mask material and to expose a substrate underlying the second mask material.