摘要:
The present invention relates to a dimension measuring SEM system and a circuit pattern evaluating system capable of achieving accurate, minute OPC evaluation, the importance of which increase with the progressive miniaturization of design pattern of a circuit pattern for a semiconductor device, and a circuit pattern evaluating method. Design data and measured data on an image of a resist pattern formed by photolithography are superposed for the minute evaluation of differences between a design pattern defined by the design data and the image of the resist pattern, and one- or two-dimensional geometrical features representing differences between the design pattern and the resist pattern are calculated. In some cases, the shape of the resist pattern differs greatly from the design pattern due to OPE effect (optical proximity effect). To superpose the design data and the measured data on the resist pattern stably and accurately, an exposure simulator calculates a simulated pattern on the basis of photomask data on a photomask for an exposure process and exposure conditions and superposes the simulated pattern and the image of the resist pattern.
摘要:
In an exposure process or etching process, an image feature amount useful for estimating a cross-sectional shape of a target evaluation pattern, process conditions for the pattern, or device characteristics of the pattern is calculated from an SEM image. The image feature amount is compared with learning data that correlates data preliminarily stored in a database, which data includes cross-sectional shapes of patterns, process conditions for the patterns, or device characteristics of the patterns, to the image feature amount calculated from the SEM image. Thereby, the cross-sectional shape of the target evaluation pattern, the process conditions of the pattern, or the device characteristics of the pattern are nondestructively calculated.
摘要:
In order to provide an imaging-recipe arranging or creating apparatus and method adapted so that selection rules for automatic arrangement of an imaging recipe can be optimized by teaching in a SEM apparatus or the like, the imaging-recipe arranging or creating apparatus in this invention that arranges an imaging recipe for SEM-observing a semiconductor pattern using a scanning electron microscope includes a database that receives and stores layout information of the above semiconductor pattern in a low-magnification field, and an imaging-recipe arranging unit which, on the basis of the database-stored semiconductor pattern layout information, arranges the imaging recipe automatically in accordance with the automatic arrangement algorithm that includes teaching-optimized selection rules for selecting an imaging point(s).
摘要:
(1) part or all of the number, coordinates and size/shape and imaging sequence of imaging points each for observation, the imaging position change method and imaging conditions can be calculated automatically from CAD data, (2) a combination of input information and output information for imaging recipe creation can be set arbitrarily, and (3) decision is made of imaging or processing at an arbitrary imaging point as to whether to be successful/unsuccessful and in case a failure is determined, a relief process can be conducted in which the imaging point or imaging sequence is changed.
摘要:
The present invention is a template matching processing device capable of evaluating a similarity degree which supports even a case of intensive morphological change between a design image and a photographic image. In the template matching processing device, matching processing between the design image and the photographic image is performed, a partial design image is obtained by clipping a portion having the highest correlation (step 101), and processing for deforming the photographic image in accordance with the clipped design image (steps 102 to 105) is performed, so that correlation between the deformed image obtained and the design image is taken to be set as the similarity degree.
摘要:
(1) part or all of the number, coordinates and size/shape and imaging sequence of imaging points each for observation, the imaging position change method and imaging conditions can be calculated automatically from CAD data, (2) a combination of input information and output information for imaging recipe creation can be set arbitrarily, and (3) decision is made of imaging or processing at an arbitrary imaging point as to whether to be successful/unsuccessful and in case a failure is determined, a relief process can be conducted in which the imaging point or imaging sequence is changed.
摘要:
In an exposure process or etching process, an image feature amount useful for estimating a cross-sectional shape of a target evaluation pattern, process conditions for the pattern, or device characteristics of the pattern is calculated from an SEM image. The image feature amount is compared with learning data that correlates data preliminarily stored in a database, which data includes cross-sectional shapes of patterns, process conditions for the patterns, or device characteristics of the patterns, to the image feature amount calculated from the SEM image. Thereby, the cross-sectional shape of the target evaluation pattern, the process conditions of the pattern, or the device characteristics of the pattern are nondestructively calculated.
摘要:
In order to provide an imaging-recipe arranging or creating apparatus and method adapted so that selection rules for automatic arrangement of an imaging recipe can be optimized by teaching in a SEM apparatus or the like, the imaging-recipe arranging or creating apparatus in this invention that arranges an imaging recipe for SEM-observing a semiconductor pattern using a scanning electron microscope includes a database that receives and stores layout information of the above semiconductor pattern in a low-magnification field, and an imaging-recipe arranging unit which, on the basis of the database-stored semiconductor pattern layout information, arranges the imaging recipe automatically in accordance with the automatic arrangement algorithm that includes teaching-optimized selection rules for selecting an imaging point(s).
摘要:
A method is provided for estimating a cross-sectional shape or for monitoring manufacturing process parameters of a semiconductor device pattern to be measured. In this method, in order to enable SEM-based management of the cross-sectional shape or manufacturing process parameters of the pattern to be measured, the association between the cross-sectional shape or process parameters of the pattern and SEM image characteristic quantities effective for estimating the cross-sectional shape or process parameters of the pattern, is saved as learning data, and then the image characteristic quantities that have been calculated from a SEM image of the pattern are collated with the learning data to estimate the cross-sectional shape or to monitor process parameters of the pattern. Estimation with high accuracy and reliability is achievable by calculating all or part of three kinds of reliability (reliability of the image characteristic quantities, reliability of estimation engines, and reliability of estimating results) based on the distribution of the image characteristic quantities and judging from the calculated reliability whether additional learning of the learning data is necessary, or selecting and adjusting image characteristic quantities and estimation engine based on the reliability.
摘要:
The present invention relates to a dimension measuring SEM system and a circuit pattern evaluating system capable of achieving accurate, minute OPC evaluation, the importance of which increase with the progressive miniaturization of design pattern of a circuit pattern for a semiconductor device, and a circuit pattern evaluating method. Design data and measured data on an image of a resist pattern formed by photolithography are superposed for the minute evaluation of differences between a design pattern defined by the design data and the image of the resist pattern, and one- or two-dimensional geometrical features representing differences between the design pattern and the resist pattern are calculated. In some cases, the shape of the resist pattern differs greatly from the design pattern due to OPE effect (optical proximity effect). To superpose the design data and the measured data on the resist pattern stably and accurately, an exposure simulator calculates a simulated pattern on the basis of photomask data on a photomask for an exposure process and exposure conditions and superposes the simulated pattern and the image of the resist pattern.