摘要:
Methods and structures are disclosed which avoid electrostatic charge build up and subsequent electrostatic discharge (ESD) during the wafer fabrication process of magnetoresistive (MR) or giant magnetoresistive (GMR) read/write heads of magnetic disk drives. This is achieved by designing the wafer layout and process so that the MR/GMR sensor film is shorted to the magnetic shields of the head through shorting paths so that there is an equal potential between MR/GMR sensor film and magnetic shields during the entire fabrication process.
摘要:
A method for forming a magnetoresistive (MR) layer first employs a substrate over which is formed a magnetoresistive (MR) layer formed of a magnetoresistive (MR) material. There is then ion implanted selectively, while employing an ion implant method, the magnetoresistive (MR) layer to form: (1) an ion implanted portion of the magnetoresistive (MR) layer formed of an ion implanted magnetoresistive (MR) material; and (2) an adjoining non ion implanted portion of the magnetoresistive (MR) layer formed of the magnetoresistive (MR) material, where the ion implanted magnetoresistive (MR) material is a non magnetoresistive (MR) material. The method may be employed for forming within magnetoresistive (MR) sensor elements magnetoresistive (MR) layers with enhanced dimensional uniformity, and in particular enhanced overlay dimensional uniformity.
摘要:
A high data-rate stitched pole magnetic read/write-head combining sputtered and plated high magnetic moment materials and a method for fabricating same. The plating and stitching aspects of this fabrication allow the formation of a very narrow write-head, while the sputtering permits the use of high magnetic moment materials having high resistivity and low coercivity.
摘要:
The present invention provides a novel high magnetic moment material for the pole pieces as well as a metal-in-gap configuration for the pole tips of either an inductive magnetic head only or the inductive portion of a MR head. The novel material is Ni.sub.45 Fe.sub.55. In the MIG configuration each pole piece of the inductive head or the inductive head portion of a MR head has a combination of layers, each combination of layers including a first layer of high magnetic moment material Ni.sub.45 Fe.sub.55 adjacent to a transducing gap and a second layer of low magnetic moment material such as Permalloy (Ni.sub.81 Fe.sub.19) further away from the gap. Since both layers are made of NiFe all the desirable properties of this type of material can be employed as well as simplifying its construction with similar plating baths. The saturation of the first layers is 50 to 60 percent higher than the saturation of the second layers. The present invention avoids effects of magnetostriction in spite of the high magnetic moment of the first layers. By appropriately selecting the thickness ratio of the second layer with respect to the first layer the magnetostriction of the laminated structure can be reduced substantially to zero. When this thickness ratio is in the order of five to nine the magnetostriction is reduced to, or slightly below, zero. If the inductive head is employed for write functions only then the second pole tip or both pole tips can be constructed of the high moment Ni.sub.45 Fe.sub.55 material without any thickness ratio or MIG configuration constraints.
摘要:
A horizontal thin film magnetic head is provided which has well aligned pole tips. The head includes first and second seedlayers, the first and second seedlayers being located below a first pole tip and only the second seedlayer being located below the second pole tip. The first pole tip may be capped with a nonmagnetic material such as copper. A very narrow sidegap is employed between the first and second pole tips.
摘要:
An MR read transducer having passive end regions separated by a central active region comprises an MR layer made from a material having a low uniaxial magnetic anisotropy. A soft magnetic bias layer is adjacent to but spaced from the MR layer in the central region only, and the soft magnetic bias layer is made from a material having a high uniaxial magnetic anisotropy. A longitudinal bias is produced directly in each of the end regions only, and the means for producing the longitudinal bias comprise a layer made from a material having a high uniaxial magnetic anisotropy. Control of the uniaxial anisotropy can be achieved by choosing materials of appropriate magnetostriction or intrinsic uniaxial anisotropy.
摘要:
A magnetoresistive (MR) read transducer in which a layered structure comprising an MR layer, an antiferromagnetic material in direct contact with the MR layer and a thin layer of interdiffusion material in contact with the layer of antiferromagnetic material is subjected to a heating process to a temperature within a chosen temperature for a chosen time to form a magnetic interface between the antiferromagnetic material the MR layer. The magnetic interface produces a high level of exchange bias with the MR layer.
摘要:
Aggressive (i.e. tight tolerance) stitching offers several advantages for magnetic write heads but at the cost of some losses during pole trimming. This problem has been overcome by replacing the alumina filler layer, that is used to protect the stitched pole during trimming, with a layer of electro-plated material. Because of the superior step coverage associated with the plating method of deposition, pole trimming can then proceed without the introduction of stresses to the stitched pole while it is being trimmed.
摘要:
A manufacturing process is provided where aggressive (i.e. tight tolerance) stitching offers several advantages for magnetic write heads but at the cost of some losses during pole trimming. This problem has been overcome by replacing the alumina filler layer, that is used to protect the stitched pole during trimming, with a layer of electroplated material. Because of the superior step coverage associated with the plating method of deposition, pole trimming can then proceed without the introduction of stresses to the stitched pole while it is being trimmed.
摘要:
Aggressive (i.e. tight tolerance) stitching offers several advantages for magnetic write heads but at the cost of some losses during pole trimming. This problem has been overcome by replacing the alumina filler layer, that is used to protect the stitched pole during trimming, with a layer of electro-plated material. Because of the superior step coverage associated with the plating method of deposition, pole trimming can then proceed without the introduction of stresses to the stitched pole while it is being trimmed.