摘要:
Provided is a photoelectric conversion device for outputting an output voltage according to incident light, including photoelectric conversion unit for holding an optical charge generated by the incident light, a signal processing circuit impressed with a reference voltage for outputting the output voltage according to the incident light by applying a predetermined process to an output signal of the photoelectric conversion unit, and a switch provided between a terminal externally supplied with the reference voltage, and the signal processing circuit.
摘要:
Provided is an inexpensive photoelectric converter having a function of switching resolutions. In a photoelectric converter including plural photoelectric conversion circuits, an amplifier circuit connected to outputs of the photoelectric conversion circuits, and a reset circuit connected to outputs of part of the photoelectric conversion circuits, there is arranged a connection circuit between outputs of adjacent photoelectric conversion circuits of the photoelectric conversion circuits.
摘要:
Provided is an image sensor capable of outputting an image signal in accordance with a data loading position of a signal processing IC. In the image sensor that can arbitrarily select the start position of an output signal of a first photoelectric conversion element, a first input terminal of a scanning circuit of a photoelectric conversion circuit is connected to a selector circuit of a signal start position, and the selector circuit is controlled by a start signal through a start signal terminal and a delay circuit according to an external control signal.
摘要:
Provided is a photoelectric conversion device, including: a plurality of photoelectric conversion blocks each including a photoelectric conversion element, photoelectric conversion element resetting means for supplying an initialization potential to the photoelectric conversion element to reset the photoelectric conversion element, and transfer means for transferring a voltage of the photoelectric conversion element, in which the photoelectric conversion element resetting means resets the photoelectric conversion element every time the voltage of the photoelectric conversion element is transferred and for a standby period, during a reading period. Therefore, it is possible to perform accurate image reading by reducing the influence of a foreign matter adhered to a light receiving surface of a photoelectric conversion device.
摘要:
The drift region for increasing the breakdown voltage in an LDMOSFET is regarded as a resistive element. The potential distribution of the overall device is calculated by obtaining a potential distribution considering the resistance by iterative calculation. A capacitance generated in the drift region is analytically calculated assuming a linear potential distribution. A capacitance generated in the overlap region between the gate electrode and the drift region is calculated by considering the potential from the depletion region to the accumulation region.
摘要:
The present invention provides an image sensor capable of making waveforms of image signals, which are outputs from photoelectric converting elements, flat, and capable of acquiring image information in high precision. The image sensor includes: a plurality of photoelectric converting elements; a plurality of selecting switches provided in correspondence with the photoelectric converting elements; a scanning circuit for ON/OFF-controlling the selecting switches; a differential amplifier for amplifying a difference voltage between an electric signal entered from the photoelectric converting elements and a reference voltage; and a resistor electrically connected to two input terminals of the differential amplifier.
摘要:
Provided is an image sensor capable of outputting an image signal in accordance with a data loading position of a signal processing IC. In the image sensor that can arbitrarily select the start position of an output signal of a first photoelectric conversion element, a first input terminal of a scanning circuit of a photoelectric conversion circuit is connected to a selector circuit of a signal start position, and the selector circuit is controlled by a start signal through a start signal terminal and a delay circuit according to an external control signal.
摘要:
An image sensor capable of arbitrarily outputting initialization potential from an output terminal of a light receiving device is provided. The electric potential of an external control signal of one chip out of plural linear image sensor ICs is arbitrarily fixed to make the first or last sensor IC chip alone output a dark level all the time, or an external control signal is driven to select some from all sensor IC chips and make the chosen ones output, or a differential between a signal of a sensor IC chip that always outputs the dark level and a signal of a sensor IC chip that outputs an image signal is outputted, for correction of the dark level.
摘要:
The present invention provides an image sensor capable of making waveforms of image signals, which are outputs from photoelectric converting elements, flat, and capable of acquiring image information in high precision. The image sensor includes: a plurality of photoelectric converting elements; a plurality of selecting switches provided in correspondence with the photoelectric converting elements; a scanning circuit for ON/OFF-controlling the selecting switches; a differential amplifier for amplifying a difference voltage between an electric signal entered from the photoelectric converting elements and a reference voltage; and a resistor electrically connected to two input terminals of the differential amplifier.
摘要:
This method for manufacturing a semiconductor device comprises: a step for forming a first groove (51) that extends in a prescribed direction in a first insulating layer (25) on a semiconductor substrate (1); a step for forming an electrically conductive embedded layer (127) in the first groove; a step for forming a first and second plug (27b, 27c) by dividing the embedded layer in a prescribed direction; a step for forming a first conductive film (55), having lower resistance than the embedded layer, on the exposed side surfaces of the first and second plugs; a step for embedding a second insulating layer (29) in a second groove that is located between the first conductive films of the first and second plugs; and a step for forming a second conductive film (37), having lower resistance than the embedded layer, on the exposed top surfaces of the first and second plugs.