摘要:
An apparatus for detecting at least one species using Raman light detection includes at least one laser source for illuminating a sample containing the at least one species. The apparatus also includes a modulating element for modulating a spatial relationship between the sample and the light beams to cause relative positions of the sample and the light beams to be oscillated, in which Raman light at differing intensity levels are configured to be emitted from the at least one species based upon the different wavelengths of the light beams illuminating the sample. The apparatus also includes a Raman light detector and a post-signal processing unit configured to detect the at least one species.
摘要:
Embodiments of the present invention are directed to beamsplitters that include optical elements to correct for beam offset. In one embodiment, a beamsplitter includes a first plate having two approximately parallel and opposing planar surfaces and a partially reflective layer coating one of the planar surfaces, and a compensator plate having two approximately parallel and opposing planar surfaces. The compensator plate is positioned so that an incident beam of light passing through the compensator plate acquires a first beam offset. Subsequently, the incident beam of light with the first beam offset passing through the first plate is split into a reflected beam and a transmitted beam by the partially reflective layer where the transmitted beam has a second beam offset that substantially cancels the first beam offset such that the transmitted beam is approximately parallel to and aligned with the incident beam.
摘要:
An optical resonator, a photonic system and a method of optical resonance employ optical waveguide segments connected together with total internal reflection (TIR) mirrors to form a closed loop. The optical resonator includes the optical waveguide segments, an intracavity active element coupled to a designated one of the optical waveguide segments, the TIR mirrors and a photo-tunneling input/output (I/O) port. The photo-tunneling I/O port includes one of the TIR mirrors. The method includes propagating and reflecting the optical signal, or a portion thereof, in the optical resonator, transmitting a portion of the optical signal through the I/O port, and influencing the optical signal. The photonic system includes the optical resonator with optical gain and a source of an optical signal.
摘要:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microdisk comprises: a top layer; a bottom layer; an intermediate layer having at least one quantum well, the intermediate layer sandwiched between the top layer and the bottom layer; a peripheral annular region including at least a portion of the top, intermediate, and bottom layers; and a current isolation region configured to occupy at least a portion of a central region of the microdisk including at least a portion of the top, intermediate, and bottom layers and having relatively lower index of refraction than the peripheral annular region.
摘要:
Nanowire-based photodiodes are disclosed. The photodiodes include a first optical waveguide having a tapered first end, a second optical waveguide having a tapered second end, and at least one nanowire comprising at least one semiconductor material connecting the first and second ends in a bridging configuration. Methods of making the photodiodes are also disclosed.
摘要:
A modulatable source is to generate a signal. A multi-mode fiber is to propagate the signal. The fiber is associated with a fiber d*NA, corresponding to a product of a fiber diameter (d) and a fiber numerical aperture (NA), substantially between 1 micron radian and 4 micron radian. A receiver is to receive the propagated signal.
摘要:
An apparatus comprises a given multimode optical waveguide extending in a given direction. The apparatus also comprises another multimode optical waveguide extending in another direction and intersecting with the given multimode waveguide. The apparatus further comprises a bi-stable optical switch positioned at the intersection of the given multimode optical waveguide and the another multimode optical waveguide to redirect a multimode optical signal transmitted on the given multimode optical waveguide to the another optical waveguide in a redirection state and pass the multimode optical signal transmitted on the given multimode optical waveguide across the intersection of the given multimode optical waveguide and the another optical waveguide in a pass-through state. The bi-stable optical switch can comprise a gap extending diagonally from a given corner of the intersection of the given and the another optical multimode waveguides to an opposing corner of the intersection.
摘要:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microdisk comprises: a top layer; a bottom layer; an intermediate layer having at least one quantum well, the intermediate layer sandwiched between the top layer and the bottom layer; a peripheral annular region including at least a portion of the top, intermediate, and bottom layers; and a current isolation region configured to occupy at least a portion of a central region of the microdisk including at least a portion of the top, intermediate, and bottom layers and having relatively lower index of refraction than the peripheral annular region.
摘要:
A light-emitting diode (LED) (101). The LED (101) includes a plurality of portions including a p-doped portion (112), an intrinsic portion (114), and a n-doped portion (116). The intrinsic portion (114) is disposed between the p-doped portion (112) and the n-doped portion (116) and forms a p-i junction (130) and an i-n junction (134) The LED (101) also includes a metal-dielectric-metal (MDM) structure (104) including a first metal layer (140), a second metal layer (144), and a dielectric medium disposed between the first metal layer (140) and the second metal layer (144). The metal layers of the MDM structure (104) are disposed about orthogonally to the p-i junction (130) and the i-n junction (134); the dielectric medium includes the intrinsic portion (114); and, the MDM structure (104) is configured to enhance modulation frequency of the LED (101) through interaction with surface plasmons that are present in the metal layers.
摘要:
A free-space optical communication system includes a detector array having a plurality of detector elements and a transmitting source. Dynamic movement of the optical signal on the detector array is caused by changes in orientation of the transmitting source. A tracker tracks the movement of the optical signal in real-time on the detector array. An output signal is derived from at least one of the detector elements illuminated by the optical signal.