Abstract:
A method receiving a control message at an apparatus of a base station of a first smaller cell, said control message being provided by a control apparatus of a second larger cell, said first cell at least partially overlying said second cell, said control message being provided dependent on a speed of at least one user equipment; and causing, in response to said control message, said base station of said first cell to be in a first power and/or interference mode.
Abstract:
There is provided a method comprising receiving a request from a user equipment for resource allocation for at least one service coverage zone in a coverage area of a first network, the first network comprising a plurality of nodes forming a synchronised sub-network, said nodes configured to provide a user equipment with at least one of instant radio access and cellular access, wherein the sub-network is associated with at least one cellular network which provides cellular access over the first network area and wherein said request comprises first information, allocating instant radio access resources for the user equipment for use within the at least one service coverage zone and providing an indication of said instant radio access resources to said user equipment.
Abstract:
The present invention addresses method, apparatus and computer program product for setting up a proximity services device-to-device communication service. Thereby, by a transmitting user equipment, a message including application control information is compiled, a scheduling assignment for scheduling the message transmission is transmitted to a device to be set up, and the message is transmitted to the device according to the scheduling assignment. A receiving user equipment receives a scheduling assignment and at least one of data packets scheduled in the scheduling assignment, determines whether at least one of the received data packets relates to a new proximity services device-to-device communication service traffic flow, determines whether a message including application control information is included in the at least one of the received data packets, and completes the setup based on the application control information.
Abstract:
There is provided a solution for improving the quality of service of end-to-end communication between at least two user terminals. The solution comprises applying uplink signaling in which information related to the traffic status of a direct device-to-device communication link is transmitted.
Abstract:
There is provided a method, comprising: arranging a set of user nodes (311-322) of a social network community (302) into at least one proximity-based cluster (304, 306, 308); determining popular data content in a given proximity-based cluster; and proactively caching the popular data content to at least one user node of the proximity-based cluster, in order to enable the user nodes in the proximity-based cluster to transfer the popular data content via direct proximity-based communication between the user nodes.
Abstract:
The invention relates to an apparatus including: at least one processor and at least one memory including a computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to: select and configure a commercial user device to operate as a mobile relay agent for public safety usage and/or a public safety device to operate as a mobile relay and/or a mobile gateway for public safety usage, allocate a public safety specific spectrum to device-to-device communications for the public safety usage, and provide mobile backhaul services by using commercial resources.
Abstract:
A technique, comprising: controlling a radio transmitter or radio transceiver of a device of a first radio system to transmit to a second radio system information about use of at least one radio resource for one or more transmissions outside the control of the second radio system, wherein said at least one radio resource is also usable for transmissions controlled by the second radio system.
Abstract:
Initial Setting and Configuration of E-UTRAN for Energy-Efficient IOPS Certain embodiments of the invention generally relate to initial setting and configuration of E-UTRAN for energy-efficient isolated E-UTRAN operation for public safety. A method may include determining an initial configuration mode of a network element for setting up a self-controlled radio access network. The method may also include determining an initial downlink transmission power of the network element coupled with the determined initial configuration mode. The method may further include detecting a need of changing downlink transmission power of the network element based on at least one of traffic demands and conditions of the self-controlled radio access network. The method may also include determining a new downlink transmission power. The method may further include indicating the change of at least one of the downlink transmission power and the initial configuration mode to at least one user equipment.
Abstract:
A concept of having at least one representative access node for inter-operator interactions for spectrum sharing between a first operator's network and one or more further operators' networks is introduced, the representative access node being discoverable by a discovery procedure performed by access nodes. According to an example implementation, a method or technique may include performing a discovery procedure for discovering one or more representative access nodes for inter-operator interactions for spectrum sharing between a first operator's network and one or more further operators' networks, and causing a transmission of results of the discovery procedure to a controlling entity.
Abstract:
An example implementation may include controlling receiving, in a first network, negotiation information for the asymmetric power usage of a shared spectrum; determining, in the first network, a minimum spectrum demand in dependence on the negotiation information; controlling receiving, in the first network, a minimum spectrum demand from at least one second network; and determining, in the first network, asymmetric power usage of the shared spectrum in dependence on the minimum spectrum demand from the at least one second network and the minimum spectrum demand of the first network.