Abstract:
A method for producing an image pickup apparatus includes: a process of cutting an image pickup chip substrate where electrode pads are formed around each of the light receiving sections to fabricate image pickup chips; a process of bonding image pickup chips determined as non-defective products to a glass wafer to fabricate a joined wafer; a process of filling a sealing member among the image pickup chips on the joined wafer; a machining process including a thinning a thickness of the joined wafer to flatten a machining surface and a forming through-hole interconnections, each of which is connected to each of the electrode pads; a process of forming a plurality of external connection electrodes, each of which is connected to each of the electrode pads via each of the through-hole interconnections; and a process of cutting the joined wafer.
Abstract:
In a capsule endoscope, on an inside of a capsule type housing including a cylindrical main body section and two semispherical end cover sections and having a rotationally symmetrical shape with respect to a center axis of the housing, an image pickup board section, a transmission board section, and a reception board section are housed such that principal planes of the image pickup board section, the transmission board section, and the reception board section are orthogonal to the center axis. A coil wire of at least one of a transmission coil formed by a transmission coil wire and a reception coil formed by a reception coil wire, respective principal planes of which are orthogonal to the center axis, is disposed on the end cover section side of the housing.
Abstract:
In a capsule endoscope, inside a housing, a plurality of connecting sections of a circuit board formed by arranging a plurality of board sections to one another in a row via the connecting sections are bent at 180 degrees and the plurality of board sections are arranged such that principal planes of the respective board sections are orthogonal to a center axis of the housing. The capsule endoscope includes two transducer sections, a first image pickup chip connected to the transducer section via two signal lines and configured to generate a clock signal and acquire first image data according to the generated clock signal, a second image pickup chip configured to acquire second image data according to the clock signal transmitted by one signal line from the first image pickup chip, and a transmitting section configured to transmit the first image data and the second image data by radio.
Abstract:
An image pickup apparatus for endoscope includes an optical member that is a hybrid lens element in which a plurality of optical elements are bonded to each other, at least any one of the plurality of optical elements including a resin lens disposed on a principal surface of a parallel flat glass plate, and an image pickup member that receives an object image brought into focus by the optical member. A surface of the resin lens and the principal surface around the resin lens are covered with a transparent inorganic film such that a boundary between the surface of the resin lens and the principal surface around the resin lens is also covered with the inorganic film.
Abstract:
An endoscope device includes: an imaging unit including a semiconductor chip including an image sensor formed thereon, and a protective glass adhered on the image sensor with an adhesive layer; and a holder configured to hold the imaging unit by fitting the protective glass therein. The semiconductor chip includes: a light-receiving section; a peripheral circuit section; a guard ring surrounding the light-receiving section and the peripheral circuit section; and a plurality of metal dots formed on an outer circumference of the guard ring. The protective glass is adhered to the semiconductor chip by the adhesive layer so as to cover the light-receiving section, the peripheral circuit section, the guard ring, and the metal dots, and the metal dots are formed at a same interval from the outer circumference of the guard ring to a connection end portion of a connecting surface between the semiconductor chip and the protective glass.
Abstract:
An imaging device includes a lens group configured to collect incident light, a prism configured to reflect the light collected by the lens group, and an image sensor having a light receiving unit configured to receive the light reflected by the prism and to perform photoelectric conversion on the received light to generate an electrical signal. The prism is mounted on the light receiving unit, and the lens group is directly mounted on a surface of the image sensor.
Abstract:
An endoscope apparatus includes: a solid-state imaging element including a light receiving surface on a front face thereof; a circuit board arranged on a rear face side of the solid-state imaging element, the circuit board including a wiring pattern a part of which is exposed on a distal end side of the circuit board, the distal end side facing the solid-state imaging element; a first heat dissipation member arranged between the solid-state imaging element and the exposed part of the wiring pattern, the first heat dissipation member being in contact with the rear face of the solid-state imaging element and the exposed part of the wiring pattern; and a cable electrically connected to the wiring pattern. A width of the exposed part of the wiring pattern in contact with the first heat dissipation member is wider than that of the wiring pattern at a central part of the circuit board.
Abstract:
An image pickup apparatus includes: a cover glass portion having a function of a right angle prism; an image pickup device substrate portion including an image pickup device on a first principal surface and a back-face electrode on a second principal surface, the back-face electrode being connected to the image pickup device via a through-wiring; and a bonding layer that bonds the cover glass portion and the image pickup device substrate portion that have a same outer dimension.