Abstract:
A method for forming a transducer including the step of providing a semiconductor-on-insulator wafer including first and second semiconductor layers separated by an electrically insulating layer. The method further includes depositing or growing a piezoelectric film or piezoresistive film on the wafer, depositing or growing an electrically conductive material on the piezoelectric or piezoresistive film to form at least one electrode, and depositing or growing a bonding layer including an electrical connection portion that is located on or is electrically coupled to the electrode. The method further includes the step of providing a ceramic substrate having a bonding layer located thereon, the bonding layer including an electrical connection portion and being patterned in a manner to generally match the bonding layer of the semiconductor-on-insulator wafer. The method also includes causing the bonding layer of the semiconductor-on-insulator wafer and the bonding layer of the substrate to bond together to thereby mechanically and electrically couple the semiconductor-on-insulator wafer and the substrate to form the transducer, wherein the electrical connection portions of the bonding layers of the semiconductor-on-insulator wafer and the substrate are fluidly isolated from the surrounding environment by the bonding layers.
Abstract:
A method for making a pressure sensor including the steps of providing a substrate and forming or locating a pressure sensing component on the substrate. The method further includes the step of, after the forming or locating step, etching a cavity in the substrate below the pressure sensing component to define a diaphragm above the cavity with the pressure sensing component located on the diaphragm. The pressure sensing component includes an electrically conductive electron gas which changes its electrical resistance thereacross upon movement of the diaphragm.
Abstract:
A Coriolis effect device includes a housing defining an interior chamber having a central axis, an inlet, an outlet, a leading disc and a trailing disc. Each disc is supported for oscillatory movement within the interior chamber of the housing. The leading disc defines a leading flow path in fluid communication with the inlet and interior chamber, wherein a portion of the leading flow path extends radially with respect to the central axis. The trailing disc is axially spaced from the leading disc. The trailing disc defines a trailing flow path in fluid communication with the interior chamber and the outlet, wherein a portion of the trailing flow path extends radially with respect to the central axis. A phase difference between leading and trailing oscillating signals picked up from the disc movement can be used to determine a mass flow rate of fluid passing from the inlet to the outlet.
Abstract:
An inertial measurement system having a triangular cupola shaped base structure with three mutually orthogonal sides and a bottom surface surrounding a hollow core. The bottom surface includes an aperture providing access to the hollow core. An inertial module is mounted on each of the sides and includes a gyroscopic rotational rate sensor and a linear accelerometer connected to a circuit board. The inertial measurement system also includes a motherboard and a plurality of metallization elements. The metallization elements extend from the bottom surface to the sides of the base structure and conductively connect the inertial module to the motherboard. The inertial measurement system may also include a non-conductive adhesive underfill positioned between the inertial module and the base structure.
Abstract:
A sensor for monitoring loads in a landing gear torque linkage includes a main pin having an axial interior bore defined therein. The main pin is configured and adapted to engage a torque link to a strut lug of a landing gear strut. A core pin is mounted axially within an interior bore of the main pin and is spaced radially inwardly from the interior bore for relative displacement with respect to the main pin. A capacitor is included having an inner capacitor plate mounted to the core pin. An outer capacitor plate is mounted to the main pin. Relative displacement of the core pin and the main pin due to loads acting on the torque link and strut lug results in relative displacement of the inner and outer capacitor plates. Signals can thereby be produced indicative of the loads acting on the torque link.
Abstract:
A capacitive strain sensor for sensing strain of a structure. The sensor includes a first section attached to the structure at a first location and a second section attached to the structure at a second location. The first section includes a capacitor plate electrically isolated from the structure and the second section includes two electrically isolated capacitive plates, both of the plates being electrically isolated from the structure. A flexible connector connects the first section to the second section. The capacitor plate of the first section is separated from the two capacitive plates of the second section by at least one capacitive gap. When strain is experienced by the structure, a change occurs in the capacitive gap due to relative motion between the first and second sections. The first section includes a core and the second section includes a ring that receives the core.
Abstract:
An apparatus is disclosed for monitoring characteristics of a fluid lubricant contained within a lubricant chamber formed in a wheel hub mounted for rotation about a stationary wheel axle. The apparatus includes an annular bearing spacer configured for mounting on the wheel axle between axially opposed inboard and outboard bearings, the annular bearing spacer forming an interior lubricant reservoir between an inner surface of the spacer and the wheel axle, a guide vane for directing lubricant from the lubricant chamber to the interior lubricant reservoir during rotation of the wheel hub assembly about the wheel axle, and a sensor operatively associated with the interior lubricant reservoir for determining a condition of the lubricant.
Abstract:
A sensor for monitoring loads in a landing gear torque linkage includes a main pin having an axial interior bore defined therein. The main pin is configured and adapted to engage a torque link to a strut lug of a landing gear strut. A core pin is mounted axially within an interior bore of the main pin and is spaced radially inwardly from the interior bore for relative displacement with respect to the main pin. A capacitor is included having an inner capacitor plate mounted to the core pin. An outer capacitor plate is mounted to the main pin. Relative displacement of the core pin and the main pin due to loads acting on the torque link and strut lug results in relative displacement of the inner and outer capacitor plates. Signals can thereby be produced indicative of the loads acting on the torque link.
Abstract:
A sensor for monitoring external loads acting on a pin assembly includes a pin having an axial interior bore defined therein and having a length defined from a first end to an opposed second end thereof. A core pin is mounted axially within the interior bore of the pin spaced radially inwardly from the interior bore for relative displacement with respect to the pin. A capacitor is provided having an inner capacitor plate mounted to the core pin, and an outer capacitor plate mounted to the pin, such that relative displacement of the core and the pin due to external loading on the pin results in relative displacement of the inner and outer capacitor plates. The capacitor is configured and adapted to be connected to an electrical circuit to produce signals indicative of external loading on the pin based on relative displacement of the inner and outer capacitor plates.
Abstract:
A force balanced mass flow meter is disclosed that includes a cylindrical sensor housing having an interior bore, an impeller body supported for axial rotation within the interior bore of the sensor housing, and including structure for converting fluid inertia into flow induced torque when fluid flows relative to the impeller body, a proximity sensor for measuring a rotation angle of the impeller body relative to the sensor housing, an electromagnet for generating a magnetic field about the sensor housing to prevent rotation of the impeller body, electronics for determining electrical values from the proximity sensor when fluid flows relative to the impeller body and a controller for controlling current supplied to the electromagnet in response to electrical values determined from the proximity sensor, to generate a magnetic field sufficient to prevent impeller rotation.