摘要:
In computer systems which do not inherently distinguish between references and primitive values within a program stack a method and apparatus to assist exact garbage collection techniques utilizes a stack tag cache which operates in conjunction with a program stack and supplies a tag item for every entry in the process stack. The value of a tag item indicates whether the stack entry is either a reference to another memory location or a primitive value, i.e. integer or floating point number. The arrangements and values of the tag items are correlated with changes to the program stack. The stack tag cache includes facilities for swapping the contents of the cache in the event of a trap or context switch, as well as means for redundantly verifying the tag value with intended instruction operand types.
摘要:
A computer system that is programmed with virtual memory accesses to physical memory employs multi-bit counters associated with its page table entries. When a page walker visits a page table entry, the multi-bit counter associated with that page table entry is incremented by one. The computer operating system uses the counts in the multi-bit counters of different page table entries to determine where large pages can be deployed effectively. In a virtualized computer system having a nested paging system, multi-bit counters associated with both its primary page table entries and its nested page table entries are used. These multi-bit counters are incremented during nested page walks. Subsequently, the guest operating systems and the virtual machine monitors use the counts in the appropriate multi-bit counters to determine where large pages can be deployed effectively.
摘要:
A sequentially performed implementation of a compound compare-and-swap (nCAS) operation has been developed. In one implementation, a double compare-and-swap (DCAS) operation does not result in a fault, interrupt, or trap in the situation where memory address A2 is invalid and the contents of memory address A1 are unequal to C1. In some realizations, memory locations addressed by a sequentially performed nCAS or DCAS instruction are reserved (e.g., locked) in a predefined order in accordance with a fixed total order of memory locations. In this way, deadlock between concurrently executed instances of sequentially performed nCAS instructions can be avoided. Other realizations defer responsibility for deadlock avoidance to the programmer.
摘要:
A multiprocessor, multi-program, stop-the-world garbage collection program is described. The system initially over partitions the root sources, and then iteratively employs static and dynamic work balancing. Garbage collection threads compete dynamically for the initial partitions. Work stealing double-ended queues, where contention is reduced, are described to provide dynamic load balancing among the threads. Contention is resolved by using atomic instructions. The heap is broken into a young and an old generation where parallel semi-space copying is used to collect the young generation and parallel mark-compacting the old generation. Speed and efficiency of collection is enhanced by use of card tables and linking objects, and overflow conditions are efficiently handled by linking using class pointers. A garbage collection termination employs a global status word.
摘要:
A system and related method of operation for migrating the memory of a virtual machine from one NUMA node to another. Once the VM is migrated to a new node, migration of memory pages is performed while giving priority to the most utilized pages, so that access to these pages becomes local as soon as possible. Various heuristics are described to enable different implementations for different situations or scenarios.
摘要:
A first software entity occupies a portion of a linear address space of a second software entity and prevents the second software entity from accessing the memory of the first software entity. For example, in one embodiment of the invention, the first software entity is a virtual machine monitor (VMM), which supports a virtual machine (VM), the second software entity. The VMM sometimes directly executes guest instructions from the VM and, at other times, the VMM executes binary translated instructions derived from guest instructions. When executing binary translated instructions, the VMM uses memory segmentation to protect its memory. When directly executing guest instructions, the VMM may use either memory segmentation or a memory paging mechanism to protect its memory. When the memory paging mechanism is active during direct execution, the protection from the memory segmentation mechanism may be selectively deactivated to improve the efficiency of the virtual computer system.
摘要:
A first software entity occupies a portion of a linear address space of a second software entity and prevents the second software entity from accessing the memory of the first software entity. For example, in one embodiment of the invention, the first software entity is a virtual machine monitor (VMM), which supports a virtual machine (VM), the second software entity. The VMM sometimes directly executes guest instructions from the VM and, at other times, the VMM executes binary translated instructions derived from guest instructions. When executing binary translated instructions, the VMM uses memory segmentation to protect its memory. When directly executing guest instructions, the VMM may use either memory segmentation or a memory paging mechanism to protect its memory. When the memory paging mechanism is active during direct execution, the protection from the memory segmentation mechanism may be selectively deactivated to improve the efficiency of the virtual computer system.
摘要:
A first software entity occupies a portion of a linear address space of a second software entity and prevents the second software entity from accessing the memory of the first software entity. For example, in one embodiment of the invention, the first software entity is a virtual machine monitor (VMM), which supports a virtual machine (VM), the second software entity. The VMM sometimes directly executes guest instructions from the VM and, at other times, the VMM executes binary translated instructions derived from guest instructions. When executing binary translated instructions, the VMM uses memory segmentation to protect its memory. When directly executing guest instructions, the VMM may use either memory segmentation or a memory paging mechanism to protect its memory. When the memory paging mechanism is active during direct execution, the protection from the memory segmentation mechanism may be selectively deactivated to improve the efficiency of the virtual computer system.
摘要:
A computer system has secondary data that is derived from primary data, such as entries in a TLB being derived from entries in a page table. When an actor changes the primary data, a producer indicates the change in a set data structure, such as a data array, in memory that is shared by the producer and a consumer. There may be multiple producers and multiple consumers and each producer/consumer pair has a separate channel. At coherency events, at which incoherencies between the primary data and the secondary data should be removed, consumers read the channels to determine the changes, and update the secondary data accordingly. The system may be a multiprocessor virtual computer system, the actor may be a guest operating system, and the producers and consumers may be subsystems within a virtual machine monitor, wherein each subsystem exports a separate virtual central processing unit.
摘要:
A computer system includes at least one virtual machine that has a plurality of virtual processors all running on an underlying hardware platform. A software interface layer such as a virtual machine monitor establishes traces on primary structures located in a common memory space as needed for the different virtual processors. Whenever any one of the virtual processors generates a trace event, such as accessing a traced structure, then a notification is sent to at least the other virtual processors that have a trace on the accessed primary structure. In some applications, the VMM derives and maintains secondary structures corresponding to the primary structures, such as where the VMM converts, through binary translation, original code intended to run on a virtual processor into code that can be run on an underlying physical processor of the hardware platform. In these applications, the VMM may rederive or invalidate the secondary structures as needed upon receipt of the notification of the trace event. Different semantics are provided for the notification, providing different choices of performance versus guaranteed consistency between primary and secondary structures. In the preferred embodiment of the invention, a dedicated sub-system is included within the VMM for each virtual processor; each sub-system establishes traces, senses trace events, issues the notification, and performs other operations relating specifically to its respective virtual processor.