Abstract:
Provided are a wireless communication apparatus and a reference signal generating method, wherein inter-cell interference is reduced inside and outside a CoMP set. A CoMP mode setting unit (101) sets whether the terminal (100) thereof is a CoMP terminal or a Non-CoMP terminal. When the terminal (100) is set as a Non-CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, from among all the ZC sequence numbers that can be used within the system. When the terminal (100) is set as a CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, by hopping the ZC sequence numbers to be used within the CoMP set. A ZC sequence generating unit (105) generates a ZC sequence to be used as an SRS, using the calculated ZC sequence number.
Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method comprises the steps of setting a standard sequence with a standard sequence length and a standard sequence number in a step, setting a threshold value in accordance with an RB number in a step, setting a sequence length corresponding to RB number in a step, judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step, including a plurality of Zadoff-Chu sequences with a sequence number and a sequence length in a sequence group in a step if the judgment is positive, and allocating the sequence group to the same cell in a step.
Abstract:
In an operation in a license-exempt band (unlicensed band), the present invention contributes to the provision of a mobile station, a base station, a transmission method and a receiving method which suitably transmit and receive a signal. The mobile station 200 includes: a transmission unit 205 which transmits an uplink signal; and a control unit 201 which, when a first number indicating a first resource amount that can be used in the transmission of the uplink signal includes a third number, which is different from a specific second number, as a prime factor, controls the transmission of a signal of a fourth number that does not include the third number as the prime factor by using a second resource.
Abstract:
Provided is a base station that performs feedback with regard to data transmission. The base station includes a downlink feedback information (DFI) generation unit and a transmitter. On the basis of a resource allocation configuration that was configured by a terminal, the DFI generation unit determines a transmission method for feedback information that includes a response signal regarding uplink data. The transmitter transmits the feedback information on the basis of the transmission method.
Abstract:
The present disclosure aims at allowing a demodulation reference signal (DMRS) pattern suitable for a terminal to be selected from among a plurality of DMRS patterns including Legacy DMRS and Reduced DMRS. Disclosed is a terminal including: reception section 21 that receives uplink control information; control section 23 that determines a specific mapping pattern from among a plurality of mapping patterns for an uplink DMRS on the basis of the control information; and DMRS generating section 24 that generates a DMRS according to the specific mapping pattern.
Abstract:
The present disclosure aims at allowing a demodulation reference signal (DMRS) pattern suitable for a terminal to be selected from among a plurality of DMRS patterns including Legacy DMRS and Reduced DMRS. Disclosed is a terminal including: reception section 21 that receives uplink control information; control section 23 that determines a specific mapping pattern from among a plurality of mapping patterns for an uplink DMRS on the basis of the control information; and DMRS generating section 24 that generates a DMRS according to the specific mapping pattern.
Abstract:
The present invention adopts a configuration such that when cooperative reception by a plurality of base stations is not applied, a reference signal sequence determined from a selection baseline value corresponding to the number of a sequence group allocated to a cell belonging to the device in question is selected from among a plurality of selection baseline values as a reference signal sequence for non-cooperative reception, whereas when cooperative reception by a plurality of base stations is applied, a reference signal sequence determined from one or more intermediate selection baseline values set between two adjacent selection baseline values corresponding to the number of a sequence group allocated individually to a terminal device is selected among the plurality of selection baseline values as a reference signal sequence for cooperative reception differing from the reference signal sequence for non-cooperative reception.
Abstract:
The wireless communication method used for transmitting interfering resource allocation information (IRAI) comprises a step of transmitting the IRAI through L1 signaling from the serving eNB to the victim UE, wherein the IRAI indicates only interfering resource block (RB) allocation within the bandwidth of RBs allocated to the victim UE at least in the case that the resource allocation type of the interfering UE is type 0, type 1, or type 2-L. The resource allocation type of the interfering UE can be signaled from the serving eNB to the victim UE within the downlink control information (DCI) of the victim UE for allocating resource. The indication mode of the IRAI for at least one interfering UE among the multiple interfering UEs that belong to a same interfering cell can be dependent on those interfering UEs whose IRAI has been indicated among the multiple interfering UEs.
Abstract:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method, R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) are divided into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequences is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.