Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “intra_chroma_pred_mode”.
Abstract:
A motion vector calculation method which attains a higher compression rate, includes: a selection step of selecting one of at least one reference motion vector of a reference block; and a calculation step of calculating a motion vector of a current block to be processed, using the one reference motion vector selected in the selection step, and in the selection step, when the reference block has two reference motion vectors, one of the two reference motion vectors is selected based on whether the reference block is located before or after the current block in display time order, and when the reference block has only one reference motion vector, the one reference motion vector is selected.
Abstract:
An image coding method comprising: obtaining current signals to be coded of each of the processing units of the image; generating a binary signal by performing binarization on each of the current signals to be coded; selecting a context for each of the current signals to be coded from among a plurality of contexts; performing arithmetic coding of the binary signal by using coded probability information associated with the context selected in the selecting; and updating the coded probability information based on the binary signal, wherein, in the selecting, the context for the current signal to be coded is selected, as a shared context, for a signal which is included in one of a plurality of processing units and has a size different from a size of the processing unit including the current signal to be coded.
Abstract:
A video encoding method of performing scalable encoding on input video includes: determining a total number of layers of the scalable encoding to be less than or equal to a maximum layer count determined according to a frame rate; and performing the scalable encoding on the input video to generate a bitstream, using the determined total number of layers.
Abstract:
An image coding method includes: adding, to a candidate list, a first adjacent motion vector as a candidate for a predicted motion vector to be used for coding the current motion vector; selecting the predicted motion vector from the candidate list; and coding the current motion vector, wherein in the adding, the first adjacent motion vector indicating a position in a first reference picture included in a first reference picture list is added to the candidate list for the current motion vector indicating a position in a second reference picture included in a second reference picture list.
Abstract:
A moving picture coding method for coding a current block derives a first candidate having a first motion vector predictor derived from a first motion vector that has been used to code a first block. It is determined whether a total number of one or more candidates having the first candidate is less than a maximum candidate number, and a second candidate having a second motion vector predictor is derived when the total number of the one or more candidates having the first candidate is less than the maximum candidate number. The second motion vector predictor is a zero vector. A candidate for coding the current block is selected out of the plurality of candidates having the first candidate and the second candidate.
Abstract:
An image decoding method decodes a coded stream which includes processing units and a header of the processing units, and which is generated by coding a moving picture using inter prediction. The processing units includes at least one processing unit divided in a hierarchy, the hierarchy including a highest hierarchical layer in which a coding unit exists as a largest processing unit and a lower hierarchical layer in which a prediction unit exists. The method includes identifying, by parsing hierarchy depth information stored in the header and indicating a hierarchical layer higher than a lowest hierarchical layer in which a smallest prediction unit exits, a hierarchical layer which is indicated by the hierarchy depth information or a hierarchical layer higher than the indicated hierarchical layer. The hierarchical layer includes a prediction unit in which a reference index is stored. The prediction unit is decoded using the reference index.
Abstract:
A moving picture encoding method for increasing coding efficiency includes: determining whether or not to apply orthogonal transformation, to calculate a value of an orthogonal transform skip flag; performing the orthogonal transformation on a prediction residual according to the value of the orthogonal transform skip flag, to calculate at least one orthogonal transform coefficient; performing quantization on at least the one orthogonal transform coefficient, to calculate at least one quantized coefficient; performing variable-length encoding on the orthogonal transform skip flag; and changing a scan order for at least the one quantized coefficient according to the value of the orthogonal transform skip flag, and performing variable-length encoding on at least the one quantized coefficient in the scan order after the change.
Abstract:
An image encoding method includes: selecting one motion prediction model from a plurality of motion prediction models including a translational motion model and a non-translational motion model for each of blocks in the image; performing motion prediction using the selected motion prediction model to generate a prediction image; generating a reconstructed image using the prediction image; determining that filtering is to be performed if the non-translational motion model is selected for at least one of a first block and a second block that is adjacent to the first block; and performing the filtering on a boundary between the reconstructed image for the first block and the reconstructed image for the second block if it is determined that the filtering is to be performed.
Abstract:
A moving picture coding method includes (i) transforming, for each of one or more second processing units included in the first processing unit, a moving picture signal in a spatial domain into a frequency domain coefficient and quantizing the frequency domain coefficient, and (ii) performing arithmetic coding on a luminance CBF flag indicating whether or not a quantized coefficient is included in the second processing unit in which transform and quantization are performed, wherein, in the arithmetic coding, a probability table for use in arithmetic coding is determined according to whether or not the size of the first processing unit is identical to the size of the second processing unit and whether or not the second processing unit has a predetermined maximum size.