Abstract:
An image display method includes displaying an integrated video in which videos of a scene from different viewpoints are arranged in a frame, the videos including at least one real video and at least one virtual video generated from the at least one real video. A first user interface into which a first operation is input is displayed. Viewpoints of the displayed videos are changed according to the first operation. A second user interface into which a second operation is input is displayed. A playing speed of the displayed videos is changed according to the second operation.
Abstract:
An image coding method includes: performing context arithmetic coding to consecutively code (i) first information indicating whether or not to perform sample adaptive offset (SAO) processing for a first region of an image and (ii) second information indicating whether or not to use, in the SAO processing for the first region, information on SAO processing for a region other than the first region, the context arithmetic coding being arithmetic coding using a variable probability, the SAO processing being offset processing on a pixel value; and performing bypass arithmetic coding to code other information which is information on the SAO processing for the first region and different from the first information or the second information, after the first information and the second information are coded, the bypass arithmetic coding being arithmetic coding using a fixed probability.
Abstract:
An image coding method includes performing: context arithmetic coding to consecutively code (i) first information indicating whether or not to perform SAO processing for a first region and (ii) second information indicating whether or not to use, in the SAO processing for the first region, information on SAO processing for a region except the first region; and bypass arithmetic coding to code other information after the first and second information are coded. The other information includes third information indicating whether the SAO processing is edge or band offset processing. In the performing of context arithmetic coding, an initial bit value in a bit string of a parameter indicating a type of the SAO processing is coded as the first information. In the performing of bypass arithmetic coding, a value of a next bit following the initial bit in the bit string of the parameter is coded as the third information.
Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “inter_pred_flag”.
Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “intra_chroma_pred_mode”.
Abstract:
A moving picture coding method for coding a current block derives a first candidate having a first motion vector predictor derived from a first motion vector that has been used to code a first block. It is determined whether a total number of one or more candidates having the first candidate is less than a maximum candidate number, and a second candidate having a second motion vector predictor is derived when the total number of the one or more candidates having the first candidate is less than the maximum candidate number. The second motion vector predictor is a zero vector. A candidate for coding the current block is selected out of the plurality of candidates having the first candidate and the second candidate.
Abstract:
A moving picture encoding method for increasing coding efficiency includes: determining whether or not to apply orthogonal transformation, to calculate a value of an orthogonal transform skip flag; performing the orthogonal transformation on a prediction residual according to the value of the orthogonal transform skip flag, to calculate at least one orthogonal transform coefficient; performing quantization on at least the one orthogonal transform coefficient, to calculate at least one quantized coefficient; performing variable-length encoding on the orthogonal transform skip flag; and changing a scan order for at least the one quantized coefficient according to the value of the orthogonal transform skip flag, and performing variable-length encoding on at least the one quantized coefficient in the scan order after the change.
Abstract:
A moving picture coding method includes (i) transforming, for each of one or more second processing units included in the first processing unit, a moving picture signal in a spatial domain into a frequency domain coefficient and quantizing the frequency domain coefficient, and (ii) performing arithmetic coding on a luminance CBF flag indicating whether or not a quantized coefficient is included in the second processing unit in which transform and quantization are performed, wherein, in the arithmetic coding, a probability table for use in arithmetic coding is determined according to whether or not the size of the first processing unit is identical to the size of the second processing unit and whether or not the second processing unit has a predetermined maximum size.
Abstract:
An image coding method includes: deriving a candidate for a motion vector predictor from a neighboring motion vector; adding the candidate to a list; selecting a motion vector predictor from the list; coding a current block; and coding a current motion vector. In the deriving, the candidate is derived according to a first derivation scheme when each of a current reference picture and a neighboring reference picture is determined to be a long-term reference picture, and the candidate is derived according to a second derivation scheme when each of a current reference picture and a neighboring reference picture is determined to be a short-term reference picture.
Abstract:
A three-dimensional information processing method includes: obtaining, via a communication channel, map data that includes first three-dimensional position information; generating second three-dimensional position information from information detected by a sensor; judging whether one of the first three-dimensional position information and the second three-dimensional position information is abnormal by performing, on one of the first three-dimensional position information and the second three-dimensional position information, a process of judging whether an abnormality is present; determining a coping operation to cope with the abnormality when one of the first three-dimensional position information and the second three-dimensional position information is judged to be abnormal; and executing a control that is required to perform the coping operation.