Abstract:
A network switch and a method for data switching using a crossbar switch fabric with output port groups operating concurrently and independently that increases throughput and reduces scheduling complexity. The network switch includes a crossbar switch fabric, plurality of output port groups, and a plurality of input ports. The crossbar switch fabric includes a plurality of inputs and outputs. The plurality of output port groups operate concurrently and independently, and each output port group includes one or more output ports and is configured to receive a packet from one of the outputs of the crossbar switch and to send the packet to an output port. The plurality of input ports are coupled to an input of the crossbar switch fabric and configured to send packets to the crossbar switch fabric through the input of the crossbar switch fabric. Each input port includes a plurality of input buffer groups, and each input buffer group is assigned to send a packet for one of the output port groups such that there is a one-to-one correspondence between each of the input buffer groups and output port groups.
Abstract:
A vertical semiconductor rectifier device includes a semiconductor substrate of first conductivity type and having a plurality of gates insulatively formed on a first major surface and a plurality of source/drain regions of the first conductivity type formed in surface regions of second conductivity type in the first major surface adjacent to the gates. A plurality of channels of the second conductivity type each abuts a source/drain region and extends under a gate.
Abstract:
A power rectifier having low on resistance, mass recovery times and low forward voltage drop. In a preferred embodiment, the present invention provides a power rectifier device employing a vertical device structure, i.e., with current flow between the major surfaces of the discrete device. The device employs a large number of parallel connected cells, each comprising a MOSFET structure with a gate to drain short via a common metallization. This provides a low Vf path through the channel regions of the MOSFET cells to the source region on the other side of the integrated circuit. A thin gate structure is formed annularly around the pedestal regions on the upper surface of the device and a precisely controlled body implant defines the channel region and allows controllable device characteristics, including gate threshold voltage and Vf. A parallel Schottky diode is also provided which increases the switching speed of the MOSFET cells. The present invention further provides a method for manufacturing a rectifier device which provides highly repeatable device characteristics and which can provide such devices at reduced cost. The active channel regions of the device are defined using pedestals in a double spacer, double implant self-aligned process. The channel dimensions and doping characteristics may be precisely controlled despite inevitable process variations in spacer sidewall formation. Only two masking steps are required, reducing processing costs.
Abstract:
A multiport bridge includes a plurality of Bridge Port Frame Handler (BPFH) units coupled through a Source Routing bus and a Transparent Bridge Bus to a microcontroller, a Packet Memory and a Transparent Bridge Control Management System (TBCMS). Each Bridge Port Frame Handler unit receives Frames from its attached LAN, forwards selected portions of Source Routing Frames to other Bridge Port Frame Handler Units for further processing. Likewise, selected portions of Transparent Bridge Frames are forwarded to the TBCMS whereat routing information and signature information is extracted and returned to the forwarding BPFH unit for further processing.
Abstract:
Electrophotographic developer compositions containing carrier, toner and special purpose additives such as flow promoters, dry lubricants and the like are prepared by coating carrier particles with a coating selected so that the triboelectric relationship between the surface of the carrier and the surface of the additive is substantially zero.
Abstract:
Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
Abstract:
Semiconductor devices and methods that include forming a fin field effect transistor by defining a fin hardmask on a semiconductor layer, forming a dummy structure over the fin hardmask to establish a planar area on the semiconductor layer, removing a portion of the fin hardmask that extends beyond the dummy structure, etching a semiconductor layer adjacent to the dummy structure to produce recessed source and drain regions, removing the dummy structure, etching the semiconductor layer in the planar area to produce fins, and forming a gate stack over the fins.
Abstract:
A method of designing an integrated circuit includes performing a pre-layout simulation of the integrated circuit. The pre-layout simulation is performed using a netlist generated from a process design kit (PDK) file. The PDK file includes a plurality of device model cards that are assigned to plurality of devices. The plurality of devices include a first device having at least one parasitic diode that is associated with at least one isolation well, the PDK file including information of the at least one parasitic diode. A design layout of the integrated circuit corresponding to a result of the pre-layout simulation is generated.
Abstract:
Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
Abstract:
Non-planar Metal Oxide Field Effect Transistors (MOSFETs) and methods for making non-planar MOSFETs with asymmetric, recessed source and drains having improved extrinsic resistance and fringing capacitance. The methods include a fin-last, replacement gate process to form the non-planar MOSFETs and employ a retrograde metal lift-off process to form the asymmetric source/drain recesses. The lift-off process creates one recess which is off-set from a gate structure while a second recess is aligned with the structure. Thus, source/drain asymmetry is achieved by the physical structure of the source/drains, and not merely by ion implantation. The resulting non-planar device has a first channel of a fin contacting a substantially undoped area on the drain side and a doped area on the source side, thus the first channel is asymmetric. A channel on atop surface of a fin is symmetric because it contacts doped areas on both the drain and source sides.