摘要:
In one aspect, the invention includes a method of semiconductive wafer processing comprising forming a silicon nitride layer over a surface of a semiconductive wafer, the silicon nitride layer comprising at least two portions, one of said at least two portions generating a compressive force against the other of the at least two portions, and the other of the at least two portions generating a tensile force against the one of the at least two portions. In another aspect, the invention includes a method of reducing stress on semiconductive wafer, the semiconductive wafer having a pair of opposing surfaces and having more silicon nitride over one of the opposing surfaces than over the other of the opposing surfaces, the method comprising providing the silicon nitride over the one of the opposing surfaces to comprise a first portion, a second portion and a third portion, the first, second and third portions being elevationally displaced relative to one another, the second portion being between the first and third portions, the second portion having a greater stoichiometric amount of silicon than the first and third portions, the semiconductive wafer being subjected to less stress than if the silicon nitride over the one of the opposing surfaces had a constant stoichiometric amount of silicon throughout its thickness. In yet other aspects, the invention includes semiconductive wafer assemblies.
摘要:
In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions. In another aspect, the invention includes an isolation region forming method comprising: a) forming a silicon nitride layer over a substrate; b) forming a masking layer over the silicon nitride layer; c) forming a pattern of openings extending through the masking layer to the silicon nitride layer; d) extending the openings through the silicon nitride layer to the underlying substrate, the silicon nitride layer having edge regions proximate the openings and having a central region between the edge regions; e) extending the openings into the underlying substrate; f) after extending the openings into the underlying substrate, reducing a thickness of the silicon nitride layer at the edge regions to thin the edge regions relative to the central region; and g) forming oxide within the openings.
摘要:
A semiconductor processing method of forming a stacked container capacitor includes, a) providing a pair of spaced conductive runners relative to a substrate, the conductive runners respectively having electrically insulative sidewall spacers and an electrically insulative cap, the caps having respective outer surfaces; b) providing a node between the runners to which electrical connection to a capacitor is to be made; c) providing an electrically conductive pillar in electrical connection with the node, the pillar projecting outwardly relative to the node between the runners and having a first outer surface positioned outwardly of both runner caps, the pillar completely filling the space between the pair of runners at the location where the pillar is located; d) providing an insulating dielectric layer outwardly of the caps and the conductive pillar; e) etching a container opening through the insulating dielectric layer to outwardly expose the conductive pillar first outer surface; f) etching the exposed conductive pillar to define a pillar second outer surface which is closer to the node than the pillar first outer surface and to deepen the container opening; g) providing an electrically conductive storage node container layer within the container opening over the second outer conductive pillar surface; h) providing a capacitor dielectric layer over the capacitor storage node layer; and i) providing an electrically conductive outer capacitor plate over the capacitor dielectric layer. Such a capacitor construction is also disclosed.
摘要:
A method and apparatus for profiling and identifying the source of a signal is provided. A first method includes receiving a signal produced by a known source and creating a matrix of wavelet coefficients corresponding to a wavelet transform of the signal. The method also includes profiling the signal according to an output of a wavelet transform utilizing a particular base function and a particular scale set. A second method includes performing a wavelet transform having a particular profile on a received signal and determining the presence of a particular signal-producing entity as a function of wavelet coefficients exceeding a threshold. An apparatus includes a receiver configured to receive a signal and a processor coupled to the receiver, such that the processor is configured to perform wavelet transforms on the signals. A database is coupled to the processor and configured to store wavelet transform profiles.
摘要:
Novel etch techniques are provided for shaping silicon features below the photolithographic resolution limits. FinFET devices are defined by recessing oxide and exposing a silicon protrusion to an isotropic etch, at least in the channel region. In one implementation, the protrusion is contoured by a dry isotropic etch having excellent selectivity, using a downstream microwave plasma etch.
摘要:
The invention includes methods for utilizing partial silicon-on-insulator (SOI) technology in combination with fin field effect transistor (finFET) technology to form transistors particularly suitable for utilization in dynamic random access memory (DRAM) arrays. The invention also includes DRAM arrays having low rates of refresh. Additionally, the invention includes semiconductor constructions containing transistors with horizontally-opposing source/drain regions and channel regions between the source/drain regions. The transistors can include gates that encircle at least three-fourths of at least portions of the channel regions, and in some aspects can include gates that encircle substantially an entirety of at least portions of the channel regions.
摘要:
In accordance with embodiments, there are provided mechanisms and methods for versioning content in a database system using content type specific objects. These mechanisms and methods for versioning content in a database system using content type specific objects can enable embodiments to provide a database system which stores information associated with multiple versions of content. The ability of embodiments to provide a database system which supports content versioning can enable an efficient and comprehensive storage of content types having different features by the database system.
摘要:
A process may include forming a mask directly on and above a region selected as an initial semiconductor fin on a substrate and reducing the initial semiconductor fin forming a semiconductor fin that is laterally thinned from the initial semiconductor fin. The process may be carried out causing the mask to recede to a greater degree in the lateral direction than the vertical direction. In various embodiments, the process may include removing material from the fin semiconductor to achieve a thinned semiconductor fin, which has receded beneath the shadow of the laterally receded mask. Electronic devices may include the thinned semiconductor fin as part of a semiconductor device.
摘要:
The invention includes methods for utilizing partial silicon-on-insulator (SOI) technology in combination with fin field effect transistor (finFET) technology to form transistors particularly suitable for utilization in dynamic random access memory (DRAM) arrays. The invention also includes DRAM arrays having low rates of refresh. Additionally, the invention includes semiconductor constructions containing transistors with horizontally-opposing source/drain regions and channel regions between the source/drain regions. The transistors can include gates that encircle at least three-fourths of at least portions of the channel regions, and in some aspects can include gates that encircle substantially an entirety of at least portions of the channel regions.
摘要:
Some embodiments include methods of forming vertical transistors. A construction may have a plurality of spaced apart fins extending upwardly from a semiconductor substrate. Each of the fins may have vertical transistor pillars, and each of the vertical transistor pillars may have a bottom source/drain region location, a channel region location over the bottom source/drain region location, and a top source/drain region location over the channel region location. Electrically conductive gate material may be formed along the fins while using oxide within spaces along the bottoms of the fins to offset the electrically conductive gate material to be above the bottom source/drain region locations of the vertical transistor pillars. The oxide may be an oxide which etches at a rate of at least about 100 Å/minute with dilute HF at room temperature. In some embodiments the oxide may be removed after the electrically conductive gate material is formed.