Abstract:
In one embodiment, an apparatus comprises a capacitor and a die. The die comprises a resistor switch coupled between a power line and the capacitor, wherein the resistor switch has an adjustable resistance, and the power line and the capacitor are both external to the die. The die also comprises a circuit configured to receive power from the power line, and a controller configured to open the resistor switch if the power line is powered down.
Abstract:
Systems and methods for performing thermal simulations of a system are disclosed herein in. In one embodiment, a computer-implemented method for thermal simulation comprises determining a leakage power profile for a circuit in the system, adding the leakage power profile to a dynamic power profile of the circuit to obtain a combined power profile, and convolving the combined power profile with an impulse response to obtain a thermal response at a location on the system.
Abstract:
In one embodiment, an apparatus comprises a capacitor and a die. The die comprises a resistor switch coupled between a power line and the capacitor, wherein the resistor switch has an adjustable resistance, and the power line and the capacitor are both external to the die. The die also comprises a circuit configured to receive power from the power line.
Abstract:
A package substrate is provided that includes a substrate and a capacitor. The substrate comprises a cavity penetrating a core layer and metal layers of the substrate. The capacitor comprises electrode pads and is disposed in the cavity. One of the metal layers of the substrate includes a discontinuous metal plane, and the electrode pads directly contact the discontinuous metal plane.
Abstract:
A method for powering up a circuit comprising a plurality of sections of progressively increasing size is described. The method comprises receiving a signal for powering up the circuit, and, in response to the signal, sequentially powering up the plurality of sections in an order of increasing size.