Abstract:
Aspects described herein relate to receiving communications in contention-based radio access technologies (RAT). Communication resources can be activated for monitoring one or more channels related to a contention-based RAT based at least in part on a discontinuous receive (DRX) cycle. The one or more channels related to the contention-based RAT can be monitored in one or more time periods following activating the communication resources to determine whether communications are received from an access network node. An on-duration timer during which the communication resources remain active to receive the communications in the contention-based RAT can be initialized based at least in part on determining that the communications are received from the access network node. The communication resources can be deactivated following expiration of the on-duration timer.
Abstract:
Certain aspects of the present disclosure relate to techniques for managing radio link failure recovery for a user equipment (UE) connected to a WWAN and a WLAN. The techniques may include establishing communication with a first radio access technology (RAT) and a second RAT. At least one data flow may be transmitted over each of the first RAT and the second RAT. Determinations may be made as to whether to maintain the at least one data flow over the second RAT when a radio link failure (RLF) is detected at the UE and/or whether to resume the at least one data flow over the second RAT upon RLF recovery. The determinations may be made at the UE, at a network entity in communication with the UE, or some combination thereof.
Abstract:
Apparatus, methods, and computer program products providing power savings in Semi-Persistent Scheduling (SPS)-configured Voice over Long Term Evolution (VoLTE) with Connected State Discontinuous Reception (C-DRX) are provided. The apparatus may be a user equipment (UE). The UE receives a packet when the UE is in a persistent scheduling mode. The UE transmits a negative-acknowledgement (NACK) message when the packet is not successfully decoded. The UE refrains from transmitting an acknowledgement (ACK) message when the packet is successfully decoded. The UE may enter a power save state immediately after the packet is successfully decoded. The packet may be addressed to the UE in a unicast message. The packet may be received during an on-duration of a C-DRX cycle. The packet my include VoLTE downlink (DL) traffic. The packet may be received on a physical downlink shared channel (PDSCH).
Abstract:
A method, an apparatus, and a computer program product for wireless communication where a macro eNB or similar device may be configured to adjust an ABS configuration that is used for designating ABS subframes are provided to provide a VoLTE service to a UE. The ABS configuration may be adjusted by imposing one or more restrictions, such as alignment of the DRX OnDuration of a UE with some offset to the serving cell non-ABS subframes, and imposing restrictions on the ABS subframe settings at the macro eNB. The method or apparatus may initiate or terminate a wireless communication feature for a UE, and may adjust an ABS configuration based on the wireless communication feature, such that a maximum limit is set on a number of ABS subframes or a minimum limit is set on a number of non-ABS subframes based on the wireless communication feature.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for detecting when a control link between a user equipment (UE) and a base station is lost and recovering the control link. In one example, a UE may detect that a control link with a base station is lost based on a timer or counter expiring or based on failing to receive signaling from the base station. In another example, a UE may be configured to transmit uplink transmissions to a base station to maintain a control link with the base station, and the base station may detect that a control link with the UE is lost if the base station fails to receive one or more uplink transmissions from the UE. If the control link is lost, the base station and the UE may communicate to re-establish the control link.
Abstract:
A communication network element may send to a plurality of wireless devices a base radio link priority model that provides as an output a first prioritization of radio links. The wireless devices may generate trained radio link priority models using machine learning based on one or more attempts to establish a communication link with the communication network. The communication network element may receive trained radio link priority models from one or more wireless devices, update the base radio link priority model, and send to the wireless devices an updated base radio link priority model that provides as an output a second prioritization of radio links.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for detecting when a control link between a user equipment (UE) and a base station is lost and recovering the control link. In one example, a UE may detect that a control link with a base station is lost based on a timer or counter expiring or based on failing to receive signaling from the base station. In another example, a UE may be configured to transmit uplink transmissions to a base station to maintain a control link with the base station, and the base station may detect that a control link with the UE is lost if the base station fails to receive one or more uplink transmissions from the UE. If the control link is lost, the base station and the UE may communicate to re-establish the control link.
Abstract:
A user equipment (UE) may operate in a reception mode that includes a set of sleep cycles and a set of wake cycles. During a sleep cycle of the UE, a signal quality of an active beam carrying a control channel or a data channel may degrade. This may result in the UE failing to decode the control channel or the data channel during a subsequent wake cycle. In some aspects, the UE may perform a measurement of one or more beams, of a set of beams, prior to the wake cycle. In some aspects, the UE may identify a beam, of the one or more beams, to use for communication with a base station (BS). In this way, the UE reduces a delay in data transfer associated with performing beam recovery after failing to decode the control channel or data channel during the wake cycle.
Abstract:
The apparatus for wireless communication includes a processing system. The processing system is configured to establish a first radio link with a master base station, establish a second radio link with a first cell associated with a secondary base station, wherein the second radio link comprises a SRB, and receiving a RRC connection reconfiguration signal from the second radio link SRB to establish the second radio link with a second cell.
Abstract:
Aspects described herein relate to communicating using multicast in a wireless network. A connection with an access point can be established using a cellular radio access technology. An internet protocol request for multicast communications can be transmitted to the access point over the connection. Multicast data can be received from the access point over resources corresponding to over-the-air multicast communications based on the internet protocol request.