Abstract:
A circuit including: a control system for a three-level buck converter, the three-level buck converter including multiple input switches, each of the input switches receiving one of a plurality of different pulse width modulated signals, the control system including: a first clock signal and a second clock signal, the second clock signal being a phase-shifted version of the first clock signal; ramp generating circuitry receiving the first and second clock signals and producing first and second ramp signals, respectively, from the first and second clock signals; a first comparing circuit receiving the first ramp signal and producing a first one of the pulse width modulated signals therefrom; and a second comparing circuit receiving the second ramp signal and producing a second one of the pulse width modulated signals therefrom.
Abstract:
Some implementations provide a coupled inductor structure that includes a first discrete inductor configured to generate a magnetic field, a second discrete inductor, and a first ferromagnetic layer coupled to the first discrete inductor and the second discrete inductor. The first ferromagnetic layer is configured to concentrate the magnetic field generated by the first discrete inductor within the coupled inductor structure. In some implementations, the coupled inductor structure further includes a second ferromagnetic layer coupled to the first discrete inductor and the second discrete inductor. The second ferromagnetic layer is configured to concentrate the magnetic field generated by the first discrete inductor within the coupled inductor structure. In some implementations, the coupled inductor structure is a bifilar inductor structure. The first discrete inductor includes a first set of windings and the second discrete inductor includes a second set of windings. The first and second discrete inductors share a common core.
Abstract:
Some novel features pertain to an in-substrate inductor structure that includes a first inductor winding, a second inductor winding and a substrate. The first inductor winding includes an electrically conductive material. The second inductor winding includes an electrically conductive material. The substrate is laterally located between the first inductor winding and the second inductor winding. The substrate is configured to provide structural coupling of the first and second inductor windings. In some implementations, the first inductor winding is laterally co-planar to the second inductor winding. In some implementations, the first inductor winding has a first spiral shape and the second inductor winding has a second spiral shape. In some implementations, the first inductor winding and the second inductor winding have an elongated circular shape. In some implementations, the substrate is a silicon substrate.