Abstract:
A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular example, a method of forming a CMOS device includes forming a first layer on an extension layer of a wafer, forming a first gate on a portion of the first layer, and forming an expansion region proximate to the extension layer. The method also includes removing a portion of the first gate to create a cavity and removing a portion of the first layer to extend the cavity to the extension layer.
Abstract:
Disclosed are optimized contract structures and fabrication techniques thereof. At least one aspect includes a semiconductor die. The semiconductor die includes a substrate and a contact disposed within the substrate. The contact includes a first portion with a first vertical cross-section having a first cross-sectional area. The first vertical cross-section has a first width and a first height. The contact also includes a second portion with a second vertical cross-section having a second cross-sectional area less than the first cross-sectional area. The second vertical cross-section includes a lower portion having the first width and a second height less than the first height, and an upper portion disposed above the lower portion and having a second width less than the first width and having a third height less than the first height.
Abstract:
Gate-all-around (GAA) transistors with an additional bottom channel for reduced parasitic capacitance and methods of fabricating the same include one or more channels positioned between a source region and a drain region. The one or more channels, which may be nanowire or nanoslab semiconductors, are surrounded by gate material. The GAA transistor further includes an additional semiconductor channel between a bottom section of a gate material and a silicon on insulator (SOI) substrate in a GAA transistor. This additional channel, sometimes referred to as a bottom channel, may be thinner than other channels in the GAA transistor and may have a thickness less than its length.
Abstract:
Multigate devices and fabrication methods that mitigate the layout effects are described. In conventional processes to fabricate multigate semiconductor devices such as FinFET devices, long isolation cut masks may be used. This can lead to undesirable layout effects. To mitigate or eliminate the layout effect, fabrication methods are proposed in which the interlayer dielectric (ILD) layer remains intact at the gate cut location during the fabrication process.
Abstract:
Semiconductor devices employing Field Effect Transistors (FETs) with multiple channel structures without shallow trench isolation (STI) void-induced electrical shorts are disclosed. In one aspect, a semiconductor device is provided that includes a substrate. The semiconductor device includes channel structures disposed over the substrate, the channel structures corresponding to a FET. An STI trench is formed between each corresponding pair of channel structures. Each STI trench includes a bottom region filled with a lower quality oxide, and a top region filled with a higher quality oxide. The lower quality oxide is susceptible to void formation in the bottom region during particular fabrication steps of the semiconductor device. However, the higher quality oxide is not susceptible to void formation. Thus, the higher quality oxide does not include voids with which a gate may electrically couple to other active components, thus preventing STI void-induced electrical shorts in the semiconductor device.
Abstract:
An apparatus includes a structure that includes a single substrate, a planar complementary metal-oxide semiconductor (CMOS) transistor formed on the single substrate, a planar tunnel field-effect transistor (TFET) formed on the single substrate, and a mobility enhancement strength layer included in the planar CMOS transistor or included in the planar TFET.