Abstract:
A semiconductor device, a semiconductor wafer and a method of forming a semiconductor wafer where a barrier layer is used to inhibit P-type ion-penetration into a dielectric layer made from a high-K material.
Abstract:
An asymmetric semiconductor device and a method of making a pair of the asymmetric devices. The semiconductor device includes a layer of semiconductor material having a source and a drain, and a dual work function gate disposed on the layer of semiconductor material to define a channel interposed between the source and the drain.
Abstract:
A method for implementing a self-aligned metal silicide gate is achieved by confining a metal within a recess overlying a channel and annealing to cause metal and its overlying silicon to interact to form the self-aligned metal silicide gate. A gate dielectric layer formed of oxynitride or a nitride/oxide stack is formed on the bottom and sidewalls of the recess prior to depositing the silicon. The metal is removed except for the portion of the metal in the recess. A planarization step is performed to remove the remaining unreacted silicon by chemical mechanical polishing until no silicon is detected.
Abstract:
A method of isolation of active islands on a silicon-on-insulator semiconductor device, comprising the steps of providing a silicon-on-insulator semiconductor wafer having a silicon active layer, a dielectric insulation layer and a silicon substrate; forming an isolation trench through the silicon active layer, the isolation trench defining at least one active island in the silicon active layer; depositing a passivating insulator in a lower portion of the isolation trench; and filling the isolation trench above the passivating insulator with a trench isolation material.
Abstract:
A semiconductor structure and method for making the same provides a gate dielectric formed of oxynitride or a nitride/oxide stack formed within a recess. Amorphous silicon is deposited on the gate dielectric within the recess and a metal is deposited on the amorphous silicon. An annealing process forms a metal silicide gate within the recess on the gate dielectric. A wider range of metal materials can be selected because the gate dielectric formed of oxynitride or a nitride/oxide stack remains stable during the silicidation process. The metal silicide gate significantly reduces the sheet resistance between the gate and gate terminal.
Abstract:
A semiconductor structure and method for making the same provides a metal gate on a silicon substrate. The gate includes a high dielectric constant on the substrate, and a chemical vapor deposited layer of amorphous silicon on the high k gate dielectric. The metal is then deposited on the CVD amorphous silicon layer. An annealing process forms silicide in the gate, with a layer of silicon remaining unreacted. The work function of the metal gate is substantially the same as a polysilicon gate due to the presence of the CVD amorphous silicon layer.
Abstract:
Deleterious roughness of metal silicide/doped Si interfaces arising during conventional salicide processing for forming shallow-depth source and drain junction regions of MOS transistors and/or CMOS devices due to poor compatibility of particular dopants and metal suicides is avoided, or at least substantially reduced, by implanting a first (main) dopant species having relatively good compatibility with the metal silicide, such that the maximum concentration thereof is at a depth above the depth to which silicidation reaction occurs and implanting a second (auxiliary) dopant species having relatively poor compatibility with the metal silicide, wherein the maximum concentration thereof is less than that of the first (main) dopant and is at a depth below the depth to which silicidation reaction occurs. The invention enjoys particular utility in forming NiSi layers on As-doped Si substrates.
Abstract:
A method of fabricating a transistor having shallow source and drain extensions utilizes a self-aligned contact. The drain extensions are provided through an opening between a contact area and the gate structure. A high-K gate dielectric material can be utilized. P-MOS and N-MOS transistors can be created according to the disclosed method.
Abstract:
A process for fabricating a semiconductor device includes the formation of a metal device feature layer using lithographic techniques, followed by an oxidation process to reduce the lateral dimension of the metal device feature. The oxidation process is carried out by selectively, laterally oxidizing the metal composition of the device feature that overlies a dielectric layer. The lateral oxidation process forms metal oxide sidewall spacers on the device feature. Upon completion of the oxidation process, the metal oxide sidewall spacers are removed and a residual layer of unoxidized metal remains. The lateral dimension of the residual layer can be substantially less than that achievable by optical lithographic techniques.
Abstract:
A process for fabricating a non-volatile memory device includes the step of forming a nitrogen region in a semiconductor substrate prior to carrying out a thermal oxidation process to form a tunnel oxide layer. In a preferred process, nitrogen atoms are ion implanted into a silicon substrate to form a nitrogen region at the substrate surface. Then, a thermal oxidation process is carried out to grow a thin tunnel oxide layer overlying the surface of the nitrogen region. During the oxidation process, nitrogen is incorporated into the growing tunnel oxide layer. A floating-gate electrode is formed overlying the tunnel oxide layer and receives electrical charge transferred from a charge control region of the substrate through the tunnel oxide layer. The tunnel oxide layer is capable of undergoing repeated programming and erasing operations while exhibiting reduced effects from stress induced current leakage. In another aspect of the invention, an MOS transistor having enhanced carrier mobility is obtained by forming a gate oxide layer over a nitrogen region of a silicon substrate. The thermal oxidation process of the invention also provides both tunnel oxide layers and gate oxide layers having a reduced thickness for a given set of thermal oxidation conditions.