Abstract:
Aspects of the invention relate to a system for monitoring the wear of a component. A conductor can be embedded in the component at a depth from a surface of the component. In one embodiment, the conductor can be operatively connected to a power source to form an electrical circuit. The resistance across the conductor can be measured. As the component contacts a second component, the component can begin to wear. Once the wear progresses to the conductor, changes in the measured resistance can result. Thus, an operator can be alerted that the component has worn to a certain point and that service may be needed. Alternatively, impedance can be measured across the conductor. Because the dielectric permeability of the material surrounding the conductor can affect impedance, changes in impedance can occur as the surface material of the component is worn away.
Abstract:
The present invention is directed to a composition curable by radiation having a wavelength of 300 nm or more, a method of producing a coated substrate using such composition and the coated product so-produced. More particularly, the composition of the present invention comprises A) from about 1 to about 99% by weight of an unsaturated polymer or oligomer, B) from about 1 to about 99% by weight of an unsaturated epoxy acrylate, C) one or more photoinitiators, and, optionally, D) one or more solvents.
Abstract:
System and computer program product for non-destructively inspecting and characterizing micro-structural features in a thermal barrier coating (TBC) on a component, wherein the micro-structural features define pores and cracks, if any, in the TBC. The micro-structural features having characteristics at least in part based on a type of process used for developing the TBC and affected by operational thermal loads to which a TBC is exposed. In one embodiment, the method allows detecting micro-structural features in a TBC, wherein the detecting of the micro-structural features is based on energy transmitted through the TBC, such as may be performed with a micro-feature detection system 20. The transmitted energy is processed to generate data representative of the micro-structural features, such as may be generated by a controller 26. The data representative of the micro-structural features is processed (e.g., by a processor 30) to determine at least one of the following: volumetric porosity information for the TBC and variation in the characteristics of the micro-structural features over a thickness of the TBC. Based on the results of the data processing, information is generated regarding at least one of the following: a present condition of the thermal barrier coating and a future likely condition of the thermal barrier coating. In another embodiment, one can estimate a level of thermal load to which the thermal barrier coating has been exposed.
Abstract:
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Abstract:
Ultraviolet (UV)-curable polyurethane compositions are provided which are made by reacting an isocyanate with an ultraviolet (UV)-curable polyol that is made by co-polymerizing an alkylene oxide, an unsaturated carboxylic acid or anhydride and a hydroxy functional compound and which has an ultra-low level of unsaturation. The inventive ultraviolet (UV)-curable polyurethane compositions may find use in or as coatings, adhesives, sealants, elastomers and the like.
Abstract:
Powder coatings having good impact resistance and weatherability characteristics are produced with an isophthalic acid-based polyester and an isocyanate-based curing agent.
Abstract:
A method of instrumenting a first component (210) for use in a combustion turbine engine (10) wherein the first component (210) has a surface contacted by a second component during operation of the combustion turbine engine (10). The method may include depositing an insulating layer (260) on the surface of the first component (210) and depositing a first conductive lead (232, 254) on the insulating layer (260). A piezoelectric material (230) may be deposited in electrical communication with the first conductive lead (232, 254) and a second conductive lead (236, 256) may be deposited in electrical communication with the piezoelectric material (230) and be insulated from the first conductive lead (232, 254) to form a sensor (50) for detecting pressure exerted on the surface of the first component (210) during operation of the combustion turbine engine (10).
Abstract:
An abradable thermal barrier coating material (10) formed of a highly defective fluorite ceramic matrix (16) having a desired degree of porosity (18) created in part by the addition of a fugitive material (19). The ceramic material has a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. Such a concentration of stabilizer results in a material that is softer than prior art materials having lower concentrations of stabilizer, and that will be more resistive to sintering than prior art materials. Embodiments include a fluorite matrix of zirconia stabilized by at least 30 wt. % yttria, or stabilized by at least 30 wt. % ytterbia, and with porosity of 10-40%. In one embodiment, a metallic gas turbine seal ring segment is coated with a bond coat layer, then with a layer of porous 8 wt. % YSZ material, and finally with a layer of 33 mole % YbSZ (61.3 wt. % YbSZ) material having porosity of 10-40%.
Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.
Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.