Abstract:
A processor includes execution resources, data storage, and an instruction sequencing unit, coupled to the execution resources and the data storage, that supplies instructions within the data storage to the execution resources. At least one of the execution resources, the data storage, and the instruction sequencing unit is implemented with a plurality of hardware partitions of like function for processing a respective one of a plurality of data streams. If an error is detected in a particular hardware partition, the data stream assigned to that hardware partition is reassigned to another of the plurality of hardware partitions, thus preventing an error in one of the hardware partitions from resulting in a catastrophic failure.
Abstract:
A multiprocessor data processing system comprising a plurality of processing units, a plurality of caches, that is each affiliated with one of the processing units, and processing logic that, responsive to a receipt of a first system bus response to a coherency operation, causes the requesting processor to execute operations utilizing super-coherent data. The data processing system further includes logic eventually returning to coherent operations with other processing units responsive to an occurrence of a pre-determined condition. The coherency protocol of the data processing system includes a first coherency state that indicates that modification of data within a shared cache line of a second cache of a second processor has been snooped on a system bus of the data processing system. When the cache line is in the first coherency state, subsequent requests for the cache line is issued as a Z1 read on a system bus and one of two responses are received. If the response to the Z1 read indicates that the first processor should utilize local data currently available within the cache line, the first coherency state is changed to a second coherency state that indicates to the first processor that subsequent request for the cache line should utilize the data within the local cache and not be issued to the system interconnect. Coherency state transitions to the second coherency state is completed via the coherency protocol of the data processing system. Super-coherent data is provided to the processor from the cache line of the local cache whenever the second coherency state is set for the cache line and a request is received.
Abstract:
A computer system includes a processing unit, a system memory, and a memory controller coupled to the processing unit and the system memory. According to the present invention, the memory controller accesses the system memory to obtain prefetch data and transmits the prefetch data to the processing unit in a prefetch write operation specifying the processing unit in a destination field. In one embodiment, the memory controller transmits the prefetch write operation in response to receipt of a prefetch hint from the processing unit, which may accompany a read-type request by the processing unit. This prefetch methodology may advantageously be implemented imprecisely, with the memory controller responding to the prefetch hint only if a prefetch queue is available and ignoring the prefetch hint otherwise. The processing unit may similarly ignore the prefetch write operation if no snoop queue is available. Consequently, communication bandwidth is not wasted by the memory controller or processing unit retrying prefetch operations. In addition, because the memory controller directs prefetching, the processing unit need not allocate a queue to the prefetch operation, thus reducing the number of queues required in the processing unit.
Abstract:
A non-uniform memory access (NUMA) computer system includes a node interconnect to which a remote node and a home node are coupled. The home node contains a home system memory, and the remote node includes at least one processing unit and a cache. In response to the cache deallocating an unmodified cache line that corresponds to data resident in the home system memory, a cache controller of the cache issues a deallocate operation on a local interconnect of the remote node. In one embodiment, the deallocate operation is further transmitted to the home node via the node interconnect only in response to an indication, such as a combined response, that no other cache in the remote node caches the cache line. In response to receipt of the deallocate operation, a memory controller in the home node updates a local memory directory associated with the home system memory to indicate that the remote node does not hold a copy of the cache line.
Abstract:
A multiprocessor data processing system requires careful management to maintain cache coherency. Conventional systems using a MESI approach sacrifice some performance with inefficient lock-acquisition and lock-retention techniques. The disclosed system provides additional cache states, indicator bits, and lock-acquisition routines to improve cache performance. The additional cache states allow cache state transition sequences to be optimized by replacing frequently-occurring and inefficient MESI code sequences with improved sequences using modified cache states.
Abstract:
A multiprocessor data processing system requires careful management to maintain cache coherency. Conventional systems using a MESI approach sacrifice some performance with inefficient lock-acquisition and lock-retention techniques. The disclosed system provides additional cache states, indicator bits, and lock-acquisition routines to improve cache performance. In particular, as multiple processors compete for the same cache line, a significant amount of processor time is lost determining if another processor's cache line lock has been released and attempting to reserve that cache line while it is still owned by the other processor. The preferred embodiment provides an indicator bit with the cache store command which specifically indicates whether the store also acts as a lock-release.
Abstract:
Disclosed is a multiprocessor data processing system that executes loads transactions out of order with respect to a barrier operation. The data processing system includes a memory and a plurality of processors coupled to an interconnect. At least one of the processors includes an instruction sequencing unit for fetching an instruction sequence in program order for execution. The instruction sequence includes a first and a second load instruction and a barrier instruction, which is between the first and second load instructions in the instruction sequence. Also included in the processor is a load/store unit (LSU), which has a load request queue (LRQ) that temporarily buffers load requests associated with the first and second load instructions. The LRQ is coupled to a load request arbitration unit, which selects an order of issuing the load requests from the LRQ. Then a controller issues a load request associated with the second load instruction to memory before completion of a barrier operation associated with the barrier instruction. Alternatively, load requests are issued out-of-order with respect to the program order before or after the barrier instruction. The load request arbitration unit selects the request associated with the second load instruction before a request associated with the first load instruction, and the controller issues the request associated with the second load instruction before the request associated with the first load instruction and before issuing the barrier operation.
Abstract:
An apparatus for accessing a banked embedded dynamic random access memory device is disclosed. The apparatus for accessing a banked embedded dynamic random access memory (DRAM) device comprises a general functional control logic and a bank RAS controller. The general functional control logic is coupled to each bank of the banked embedded DRAM device. Coupled to the general functional control logic, the bank RAS controller includes a rotating shift register having multiple bits. Each bit within the rotating shift register corresponds to each bank of the banked embedded DRAM device. As such, a first value within a bit of the rotating shift register allows accesses to an associated bank of the banked embedded DRAM device, and a second value within a bit of the rotating shift register denies accesses to an associated bank of the banked embedded DRAM device.
Abstract:
A multiprocessor computer system in which snoop operations of the caches are synchronized to allow the issuance of a cache operation during a cycle which is selected based on the particular manner in which the caches have been synchronized. Each cache controller is aware of when these synchronized snoop tenures occur, and can target these cycles for certain types of requests that are sensitive to snooper retries, such as kill-type operations. The synchronization may set up a priority scheme for systems with multiple interconnect buses, or may synchronize the refresh cycles of the DRAM memory of the snooper's directory. In another aspect of the invention, windows are created during which a directory will not receive write operations (i.e., the directory is reserved for only read-type operations). The invention may be implemented in a cache hierarchy which provides memory arranged in banks, the banks being similarly synchronized. The invention is not limited to any particular type of instruction, and the synchronization functionality may be hardware or software programmable.
Abstract:
An apparatus for providing concurrent communications between multiple memory devices and a processor is disclosed. Each of the memory device includes a driver, a phase/cycle adjust sensing circuit, and a bus alignment communication logic. Each phase/cycle adjust sensing circuit detects an occurrence of a cycle adjustment from a corresponding driver within a memory device. If an occurrence of a cycle adjustment has been detected, the bus alignment communication logic communicates the occurrence of a cycle adjustment to the processor. The bus alignment communication logic also communicates the occurrence of a cycle adjustment to the bus alignment communication logic in the other memory devices. There are multiple receivers within the processor, and each of the receivers is designed to receive data from a respective driver in a memory device. Each of the receivers includes a cycle delay block. The receiver that had received the occurrence of a cycle adjustment informs the other receivers that did not receive the occurrence of a cycle adjustment to use their cycle delay block to delay the incoming data for at least one cycle.