摘要:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols, and transmitting the subframe. Upon receiving the subframe, a wireless device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
摘要:
A base station, which includes a processor and a transmitter, communicates a reference signal to wireless communication devices in a wireless communication system. The processor encodes the reference signal into a first set of transmission resources, encodes other information into a second set of transmission resources, and multiplexes the two sets of transmission resources into a subframe, such that the first set of transmission resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of transmission resources is multiplexed into a second set of OFDM symbols. The transmitter transmits the subframe to the wireless devices. According to one embodiment, transmission resources for carrying the reference signal may be allocated according to a predetermined allocation, a semi-static allocation, a dynamic allocation, and/or an allocation based on higher layer signaling.
摘要:
A wireless communication device receives at least a section of a subframe from a base station in a wireless communication system. The subframe includes transmission resources multiplexed onto subcarriers of orthogonal frequency division multiplexed (OFDM) symbols. A first set of OFDM symbols includes a reference signal and at least a second set of OFDM symbols includes information other than the reference signal (e.g., channel-coded data). The wireless device determines which OFDM symbols of the subframe constitute the first set of OFDM symbols based on an identifier associated with a base station that transmitted the subframe. The wireless device may then process the reference signal from the OFDM symbols that are determined to be the first set of OFDM symbols. The wireless device may also determine which OFDM symbols of the subframe constitute the second set of OFDM symbols and process non-reference signal information from OFDM symbols of the second set.
摘要:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols, and transmitting the subframe. Upon receiving the subframe, a wireless device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
摘要:
A wireless terminal receives signaling information, pertaining to a reference signal transmission in at least one specifically designated sub frame, the signaling information including a list, the list including base station identities. The terminal determines, from at least one of the base station identities in the list, the time-frequency resources associated with a reference signal transmission intended for observed time difference of arrival (OTDOA) measurements from a transmitting base station associated with said one base station identity. The time of arrival of a transmission from the transmitting base station, relative to reference timing, is measured. The wireless terminal can receive a command from a serving cell to start performing inter-frequency OTDOA measurement on a frequency layer containing reference signals, the frequency layer distinct from the serving frequency layer, the serving frequency layer not containing positioning reference signals. The wireless terminal can perform OTDOA measurements subsequent to the reception of the command on a carrier frequency different from the serving cell carrier frequency. A base station transmitter can jointly schedule a reference signal transmission from a plurality of base station transmitters for the purpose of OTD estimation enhancement, and transmit identical reference signals from the plurality of base station transmitters, the reference signals being identical both in the signal sequence and time-frequency resources used for transmission.
摘要:
Methods and apparatus' of determining radio link quality are disclosed. According to various implementations, a user equipment detects an out-of-synchronization condition corresponding to a first control channel, and monitors a second control channel in response to the detecting the out-of synchronization condition.
摘要:
A downlink subframe on a single downlink carrier supports physical layer acknowledgment signaling for multiple physical uplink shared channel (PUSCH) transmissions. The physical layer acknowledgement signaling may take the form of physical hybrid ARQ indicator channel (PHICH) signaling. A base unit reserves resource elements groups (REGs) for default PHICH signaling of default PUSCH transmissions. The base unit reserves control channel elements (CCEs) for physical downlink control channel (PDCCH) signaling. A CCE contains multiple interleaved REGs. The base unit takes any unreserved CCEs and maps those CCEs for physical layer acknowledgement signaling of additional PUSCH transmissions.
摘要:
Methods and apparatus' of determining radio link quality are disclosed. According to various implementations, information indicating the time-frequency blocks to be monitored by a UE to enable the UE to locate a control channel is determined. The UE receives configuration information regarding resources used by a channel state information reference signal. It also receives configuration information regarding an interference measurement resource, as well as a channel state information reference signal. The channel state information reference signal uses the channel state information reference signal resources. A synchronization condition is determined based on the time frequency blocks to be monitored by the UE, the received channel state information reference signal and the interference measurement resource. The determined synchronization condition is sent to a higher layer.
摘要:
Methods and apparatus' of determining radio link quality are disclosed. According to various implementations, a user equipment detects an out-of-synchronization condition corresponding to a first control channel, and monitors a second control channel in response to the detecting the out-of synchronization condition.
摘要:
Methods and apparatus' of determining radio link quality are disclosed. According to various implementations, information indicating the time-frequency blocks to be monitored by a UE to enable the UE to locate a control channel is determined. The UE receives configuration information regarding resources used by a channel state information reference signal. It also receives configuration information regarding an interference measurement resource, as well as a channel state information reference signal. The channel state information reference signal uses the channel state information reference signal resources. A synchronization condition is determined based on the time frequency blocks to be monitored by the UE, the received channel state information reference signal and the interference measurement resource. The determined synchronization condition is sent to a higher layer.