Abstract:
A wireless power transmitter includes a standard resonator including a standard inductor and a standard capacitor connected to the standard inductor in parallel, one or more dedicated variable inductors connected to the standard resonator in series and having inductance varied in response to a control voltage respectively applied to the dedicated variable inductors, one or more dedicated resonance capacitors connected to the dedicated variable inductors in parallel, respectively, and a controlling unit outputting the control voltage.
Abstract:
A non-contact type power charging apparatus and a non-contact type battery apparatus may transmit power to each of a plurality of battery cells in a capacitive coupling scheme. The non-contact type power charging apparatus may include a power transmitting apparatus transmitting power in a capacitive coupling scheme, and a power receiving apparatus receiving the power transmitted from the power transmitting apparatus to charge each of a plurality of battery cells with the power. The non-contact type battery apparatus may include a plurality of power receiving electrodes each receiving power transmitted in a capacitive coupling scheme, and a plurality of battery cells each charged with the power transmitted to the plurality of power receiving electrodes.
Abstract:
A wireless power transmitter includes: a switching unit configured to receive a direct current (DC) voltage and to perform switching to output a first alternating current (AC) voltage; a piezoelectric transformer configured to receive the first AC voltage through a first piezoelectric element, and to output a second AC voltage corresponding to mechanical vibration of a second piezoelectric element caused by mechanical vibration of the first piezoelectric element; and a resonator configured to receive the second AC voltage to wirelessly transmit power.
Abstract:
A power supplying apparatus includes a first piezoelectric transformer operated at a first operating frequency, a second piezoelectric transformer operated alternately with the first piezoelectric transformer and operated at a second operating frequency, wherein the second operating frequency is a multiple of the first operating frequency.
Abstract:
A multilayer electronic component includes a ceramic body having stacked dielectric layers to form a first capacitor part and a second capacitor part, wherein the first capacitor has a constant capacitance, and the second capacitor part has a variable capacitance; a voltage control terminal formed on a lateral surface of the ceramic body; an input terminal disposed on another lateral surface of the ceramic body corresponding to the first capacitor part; and an output terminal disposed on the other lateral surface of the ceramic body corresponding to the second capacitor part separate from the input terminal.
Abstract:
A wireless signal transmitting apparatus, includes: a piezoelectric harvester configured to generate electrical energy responsive to user switch manipulation; and, a wireless communication circuit configured to generate wireless signals from the electrical energy and wirelessly transmit the wireless signals to an external wireless power receiving device.
Abstract:
A composite electronic component includes: a power stabilization unit including a capacitor and an inductor connected to each other in series and configured to rectify input voltage to generate output voltage; and a switch unit including a first switch connected to the capacitor in parallel and a second switch connected to the inductor in parallel.
Abstract:
A non-contact type power charger may include: a power transmitting device including a plurality of power transmitting coils transmitting power in a non-contact manner; and a power receiving device including a plurality of power receiving coils receiving the power in a non-contact manner to charge a plurality of battery cells, respectively connected to the plurality of power receiving coils, with the power, wherein the power transmitted to each of the plurality of power receiving coils is controlled depending on coupling coefficients between the plurality of power transmitting coils and the plurality of power receiving coils.
Abstract:
Provided are a piezoelectric energy harvester and a wireless switch including the piezoelectric energy harvester. The wireless switch uses energy generated in a piezoelectric energy harvester as a source of driving power, thereby transmitting communications signals to an external electronic device without requiring a battery. In addition, the piezoelectric energy harvester generates displacement in a piezoelectric element through a magnetic force generated in a magnet, thereby generating a constant level of energy when generating the driving power.
Abstract:
There is provided a wireless switch including: an energy harvesting unit generating a first signal and a second signal when a first button is pressed and when the first button is released, respectively; a measuring unit measuring a period of time from a time at which the first signal is generated to a time at which the second signal is generated; and a wireless signal transmitting unit transmitting a control signal depending on the period of time measured by the measuring unit.