Abstract:
In a three-dimensional shaped object manufacturing device, when a unit is moved in a forward direction, powder is supplied from a first supply portion, a powder layer is formed by a first layer forming portion, a liquid is discharged to a shaping region from a head, and a shaping table is moved in a direction separating from the unit after discharging the liquid is ended and before a second layer forming portion faces the shaping region, and when the unit is moved in a backward direction, the powder is supplied from a second supply portion, the powder layer is formed by the second layer forming portion, the liquid is discharged to the shaping region from the head, and the shaping table is moved in the direction separating from the unit after discharging the liquid to the shaping region is ended and before the first layer forming portion faces the shaping region.
Abstract:
A three-dimensional shaped object manufacturing device includes a shaping table, layer forming portions configured to form a powder layer on the shaping table, a head 3 configured to discharge, from a nozzle, a liquid containing a binder to a shaping region of a three-dimensional shaped object in the powder layer, and a control unit configured to control a movement of the head with respect to the shaping table and a drive of the head by applying a voltage, in which the control unit performs control to, after the liquid is discharged to the shaping region, execute a flushing operation of discharging the liquid from the nozzle to a flushing position different from the shaping region, and set an applied voltage during the flushing operation higher than an applied voltage when the liquid is discharged to the shaping region.
Abstract:
A manufacturing device for a three-dimensional shaped object has artificial intelligence to perform machine learning. The manufacturing device includes: an acquisition unit acquiring monitoring data of the three-dimensional shaped object and improvement condition data; a housing unit housing reference data of the monitoring data; a storage unit storing the monitoring data acquired by the acquisition unit; an inference unit classifying the monitoring data acquired by the acquisition unit into normal data and abnormal data, based on the reference data of the monitoring data housed in the housing unit, updating an inference criterion by machine learning, based on the monitoring data stored in the storage unit and classified as the normal data, and inferring what abnormality occurs when an abnormality is generated in updated data of the monitoring data newly acquired by the acquisition unit; and a decision unit deciding the improvement condition according to the abnormality inferred by the inference unit.
Abstract:
A three-dimensional shaped article producing composition is provided and contains a plurality of particles, a solvent for dispersing the particles, and nanocellulose.
Abstract:
A three-dimensional modeling apparatus includes an ejection portion capable of ejecting a fluid material, which is a material of an object, and a control portion that forms a laminated body in which one layer or more of cross-section bodies are laminated by executing one or more repetitions of a cross-section body formation process, which forms a cross-section body equivalent to one layer of the object by controlling the ejection portion and ejecting the fluid material. The control portion executes a correction process that ejects the fluid material onto a target correction location, which is at least a portion of an outline section of an upper surface of the laminated body.
Abstract:
A three-dimensional modeling apparatus includes an ejection portion capable of ejecting a fluid material, and a control portion that forms a laminated body in which one layer or more of cross-section bodies are laminated by executing one or more repetitions of a cross-section body formation process. The control portion reduces a total amount of the fluid material to be ejected at a first coordinate, which configures the apex that corresponds to the recess, to be lower than a total amount of the fluid material to be ejected at a second coordinate, which configures a region other than an outline section of the planar shape in a case in which an apex, which corresponds to a recess in a planar shape when the laminated body is viewed from above in a planar manner, is present.
Abstract:
A manufacturing method for three-dimensional structure has a layer forming step of supplying a flowable composition containing a powder and an organic material to form a unit layer, an organic material removing step of performing a treatment of removing the organic material on the unit layer, and an energy applying step of applying energy to the unit layer after the organic material removing step to form a molten layer or sintered layer, wherein the layer forming step, the organic material removing step, and the energy applying step are repeated with respect to the molten layer or sintered layer in a stacking direction as appropriate.
Abstract:
Provided is a three-dimensional structure manufacturing apparatus which manufactures a three-dimensional structure by repeatedly forming layers by using three-dimensional formation compositions containing three-dimensional formation powders, the apparatus including: a formation unit in which the three-dimensional structure is formed; and a layer formation unit which forms the layers configured with the three-dimensional formation compositions on the formation unit, in which a distance between the formation unit and the layer formation unit is adjusted according to the number of times the layer is formed.
Abstract:
Provided is an apparatus for producing a three-dimensional structure of the invention that produces a three-dimensional structure by laminating layers using a paste-like composition containing grains, the apparatus including a stage for which the composition is provided and on which the layers are formed; a first layer forming unit that supplies the composition to a forming area on the stage and forms a first layer; and a film thickness adjusting unit that adjusts the film thickness of the first layer and sets the adjusted first layer as a second layer.
Abstract:
A three-dimensional shaped article manufacturing method with which a three-dimensional shaped article having a glossy texture can be manufactured stably and efficiently is provided. A three-dimensional shaped article manufacturing method for manufacturing a three-dimensional shaped article by laminating layers formed by discharging and curing inks including a curable resin, the method including: applying a substantive section-forming ink to a region that forms the three-dimensional shaped article, and applying a sacrificial layer-forming ink for forming a sacrificial layer to a region that is adjacent to a region that forms an outermost layer of the three-dimensional shaped article and on a surface side of the outermost layer, a viscoelasticity of the sacrificial layer-forming ink during curing of the substantive section-forming ink being not less than a viscoelasticity of the substantive section-forming ink during curing of the substantive section-forming ink.