Abstract:
An integrated circuit includes first and second electronic components, a buried UTBOX insulating layer, first and second ground planes plumb with the first and second electronic components, first and second wells, first and second biasing electrodes making contact with the first and second wells and with the first and second ground planes, a third electrode making contact with the first well, a first trench isolation separating the first and third electrodes and extending through the buried insulating layer as far as into the first well, and a second trench isolation that isolates the first electrode from the first component, and that does not extend as far as the interface between the first ground plane and the first well.
Abstract:
An integrated circuit includes a semiconductor substrate, a silicon layer, a buried isolating layer arranged between the substrate and the layer, a bipolar transistor comprising a collector and emitter having a first doping, and a base and a base contact having a second doping, the base forming a junction with the collector and emitter, the collector, emitter, base contact, and the base being coplanar, a well having the second doping and plumb with the collector, emitter, base contact and base, the well separating the collector, emitter and base contact from the substrate, having the second doping and extending between the base contact and base, a isolating trench plumb with the base and extending beyond the layer but without reaching a bottom of the emitter and collector, and another isolating trench arranged between the base contact, collector, and emitter, the trench extending beyond the buried layer into the well.
Abstract:
A microelectronic component is capable of being used as a memory cell. The component includes a semiconductor layer resting on an insulating layer and including a doped source region of a first conductivity type, a doped drain region of a second conductivity type, and an intermediate region, non-doped or more lightly doped, with the second conductivity type, than the drain region, the intermediate region including first and second portions respectively extending from the drain region and from the source region. An insulated front gate electrode rests on the first portion. A first back gate electrode and a second back gate electrode are arranged under the insulating layer, respectively opposite the first portion and the second portion.
Abstract:
The present disclosure relates to a photodiode comprising: a P-conductivity type substrate region, an electric charge collecting region for collecting electric charges appearing when a rear face of the substrate region receives light, the collecting region comprising an N-conductivity type region formed deep in the substrate region, an N-conductivity type read region formed in the substrate region, and an isolated transfer gate, formed in the substrate region in a deep isolating trench extending opposite a lateral face of the N-conductivity type region, next to the read region, and arranged for receiving a gate voltage to transfer electric charges stored in the collecting region toward the read region.
Abstract:
An integrated circuit includes first and second electronic components, a buried UTBOX insulating layer, first and second ground planes plumb with the first and second electronic components, first and second wells, first and second biasing electrodes making contact with the first and second wells and with the first and second ground planes, a third electrode making contact with the first well, a first trench isolation separating the first and third electrodes and extending through the buried insulating layer as far as into the first well, and a second trench isolation that isolates the first electrode from the first component, and that does not extend as far as the interface between the first ground plane and the first well.
Abstract:
An integrated circuit includes four electronic components, a buried UTBOX layer under and plumb with the electronic components, and two pairs of oppositely doped ground planes plumb with corresponding components under the layer. A first isolation trench mutually isolates the ground planes from corresponding wells made plumb and in contact with the ground planes and exhibiting the first doping type. Bias electrodes contact respective wells and ground planes. One pair of electrodes is for connecting to a first bias voltage and the other pair is for connecting to a second bias voltage. Also included are a semiconductor substrate exhibiting the first type of doping and a deeply buried well exhibiting the second type of doping. The deeply buried well contacts the other wells and separates them from the substrate. Finally, a control electrode couples to the deeply buried well.
Abstract:
A MOS transistor protected against overvoltages formed in an SOI-type semiconductor layer arranged on an insulating layer itself arranged on a semiconductor substrate including a lateral field-effect control thyristor formed in the substrate at least partly under the MOS transistor, a field-effect turn-on region of the thyristor extending under at least a portion of a main electrode of the MOS transistor and being separated therefrom by said insulating layer, the anode and the cathode of the thyristor being respectively connected to the drain and to the source of the MOS transistor, whereby the thyristor turns on in case of a positive overvoltage between the drain and the source of the MOS transistor.
Abstract:
A device includes integrated circuit chips mounted on one another. At least one component for protecting elements of a second chip is formed in a first chip. The chips may be of the SOI type, with the first chip including a first SOI layer having a first thickness and the second chip including a second SOI layer having a second thickness smaller than the first thickness. The first chip including the component for protecting may include an optical waveguide with the component for protecting formed adjacent the optical waveguide.
Abstract:
An integrated circuit includes a transistor, an UTBOX buried insulating layer disposed under it, a ground plane disposed under the layer, a well disposed under the plane, a first trench made at a periphery of the transistor and extending through the layer and into the well, a substrate situated under the well, a p-n diode made on a side of the transistor and comprising first and second zones of opposite doping, the first zone being configured for electrical connection to a first electrode of the transistor, wherein first and second zones are coplanar with the plane, a second trench for separating the first and second zones, the second trench extending through the layer into the plane and until a depth less than an interface between the plane and the well, and a third zone under the second trench forming a junction between the zones.
Abstract:
An integrated circuit features a FET, an UTBOX layer plumb with the FET, an underlayer ground plane with first doping plumb with the FET's gate and channel, first and second underlayer semiconducting elements, both plumb with the drain or source, electrodes in contact respectively with the ground plane and with the first element, one having first doping and being connected to a first voltage, the other having the first doping and connected to a second bias voltage different from the first, a semiconducting well having the second doping and plumb with the first ground plane and both elements, a first trench isolating the first FET from other components of the integrated circuit and extending through the layer into the well, and second and third trenches isolating the FET from the electrodes, and extending to a depth less than a plane/well interface.