Abstract:
An optical mask for forming a pattern is provided. The optical mask includes: a substrate including a light blocking pattern formed on portions of the substrate, wherein the light blocking pattern includes a halftone layer and a light blocking layer formed on the halftone layer, and the halftone layer and the light blocking layer overlap such that at least an edge portion of the halftone layer is exposed. A pitch of the light blocking pattern may about 6 μm, and a transmission ratio of the halftone layer may range from about 10% to about 50%.
Abstract:
A display device comprises a display part and a sensor part. The display part includes an emission layer emitting light, and the sensor part is disposed on the display part. The sensor part includes a first conductive pattern layer, a second conductive pattern layer, and a functional insulating layer disposed between the first conductive pattern layer and the second conductive pattern layer. The functional insulating layer absorbs light in a non-emission wavelength band different from a wavelength band of the light emitted from the emission layer.
Abstract:
An OLED display according to an exemplary embodiment includes: a substrate that includes a display area and a non-display area; a pixel circuit that is disposed in the display area; organic light emitting diodes and barrier ribs that are disposed on the pixel circuit; an encapsulation layer that covers the pixel circuit, the organic light emitting diodes, and the barrier ribs; and a color filter that is disposed on the encapsulation layer, wherein the encapsulation layer comprises an edge area that is adjacent to the non-display area in the display area and a center area not directly adjacent to the non-display area and having the edge area disposed therebetween, the color filter comprises a first color filter, a second color filter, a third color filter, and color filter overlapped portions where the first color filter, the second color filter, and the third color filter are overlapped, and the color filter overlapped portions are disposed in areas where the barrier ribs are disposed, and a thickness of the color filter is greater in the edge area than in the center area.
Abstract:
An OLED display according to an exemplary embodiment includes: a substrate that includes a display area and a non-display area; a pixel circuit that is disposed in the display area; organic light emitting diodes and barrier ribs that are disposed on the pixel circuit; an encapsulation layer that covers the pixel circuit, the organic light emitting diodes, and the barrier ribs; and a color filter that is disposed on the encapsulation layer, wherein the encapsulation layer comprises an edge area that is adjacent to the non-display area in the display area and a center area not directly adjacent to the non-display area and having the edge area disposed therebetween, the color filter comprises a first color filter, a second color filter, a third color filter, and color filter overlapped portions where the first color filter, the second color filter, and the third color filter are overlapped, and the color filter overlapped portions are disposed in areas where the barrier ribs are disposed, and a thickness of the color filter is greater in the edge area than in the center area.
Abstract:
A display device including a display unit having a first region, which is flat, and second regions, which are curved, and a touch sensor layer disposed on the display unit. The touch sensor layer includes a high refractive index layer having a first refractive index and a planarization layer disposed on the high refractive index layer and having a second refractive index, which is smaller than the first refractive index, and the high refractive index layer includes pattern parts.
Abstract:
A photosensitive resin composition, an organic light emitting display device, and method for manufacturing an organic light emitting device, the composition including a photosensitive compound; a solvent; and a silsesquioxane-based copolymer, the silsesquioxane-based copolymer being obtained by copolymerizing a compound represented by the following Chemical Formula 1 with at least one of a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3; R1-R2—Si(R3)3 [Chemical Formula 1] R4—Si(R5)3 [Chemical Formula 2] Si(R6)4. [Chemical Formula 3]
Abstract:
There is provided a cleaner composition for a process of manufacturing a semiconductor and a display. The cleaner composition includes 0.01 to 5.0 wt % of amino acid-based chelating agent, 0.01 to 1.5 wt % of organic acid, 0.01 to 1.0 wt % of inorganic acid, 0.01 to 5.0 wt % of alkali compound, and the balance of deionized water and is based on acidic water with pH levels of 1 to 5. The cleaner composition may enhance metal contaminants removal capability and have a function to remove particles and organic contaminants, and prevent corrosion of copper and reverse adsorption of copper. Thus, cleaner composition may be used for various purposes of etching copper, removing residues, and a cleaner by adjusting an etch rate.
Abstract:
A positive photosensitive siloxane resin composition includes a) a siloxane copolymer obtained by performing hydrolysis and condensation polymerization of i) at least one reactive silane represented by the following Chemical Formula 1 and ii) at least one 4-functional reactive silane represented by the following Chemical Formula 2 under a catalyst, the copolymer having a polystyrene-converted weight average molecular weight Mw of 1,000 to 20,000, b) a 1,2-quinonediazide compound, and c) a solvent, (R1)nSi(R2)4-n [Chemical Formula 1] Si(R3)4 [Chemical Formula 2] wherein R1s may each independently be any one of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 15 carbon atoms, R2 may be an alkoxy group having 1 to 4 carbon atoms, phenoxy, or acetoxy, Ras may each independently be any one of an alkoxy group having 1 to 4 carbon atoms, phenoxy, or an acetoxy group, and n may be a natural number of 1 to 3.
Abstract:
A display device with a simplified manufacturing method is presented. The display device includes: a substrate; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer formed to be separated from the pixel electrode via a plurality of microcavities on the pixel electrode; a liquid crystal layer filling the microcavities; and an encapsulation layer formed on the roof layer and sealing the microcavities, wherein the roof layer includes a partition positioned between the plurality of microcavities, and the partition has a width decreases with increasing distance from the substrate.
Abstract:
A method for forming a pattern includes forming a photosensitive film by coating a photosensitive resin composition on a substrate, exposing the photosensitive film to light through a mask that includes a light transmission region and a non-light transmission region, coating a developing solution on the photosensitive film, and forming a photosensitive film pattern by baking the photosensitive film, wherein the photosensitive resin composition includes an alkali soluble base resin, a photoacid generator and a photoactive compound.