Abstract:
Provided is a display device, including a display panel. An input sensing panel is disposed on the display panel. The input sensing panel includes a plurality of first sensor units arranged along a first direction. A first connection unit is configured to connect the first sensor units. A plurality of second sensor units are arranged along a second direction crossing the first direction. A second connection unit is configured to connect the second sensor units. A first insulation layer is disposed between the first connection unit and the second connection unit. A second insulation layer covers the first insulation layer. A plurality of holes is provided on an upper surface of the second insulation layer, and a thickness of the second insulation layer is greater than a depth of each of the plurality of holes.
Abstract:
A display device may include a switching composite layer, a first electrode, a pixel defining layer, an emission layer, a second electrode, an encapsulation layer, a light blocking layer, and a touch sensor. The first electrode is positioned on the switching composite layer. The pixel defining layer covers an edge of the first electrode and has a first opening and a second opening that are spaced from each other. The emission layer is positioned inside the first opening. The second electrode covers the switching composite layer, the pixel defining layer, and the emission layer. The encapsulation layer covers the second electrode. The light blocking layer is positioned on the encapsulation layer. The touch sensor is positioned on the light blocking layer and includes a sensing electrode set. A material portion is positioned inside the second opening of the pixel defining layer and overlaps the sensing electrode set.
Abstract:
A photoresist composition includes an alkali soluble resin, a photosensitive compound, a first solvent having a boiling point of less than 200° C., and a second solvent having a boiling point of equal to or greater than 200° C.
Abstract:
A photosensitive resin composition, an organic light emitting display device, and method for manufacturing an organic light emitting device, the composition including a photosensitive compound; a solvent; and a silsesquioxane-based copolymer, the silsesquioxane-based copolymer being obtained by copolymerizing a compound represented by the following Chemical Formula 1 with at least one of a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3; R1-R2—Si(R3)3 [Chemical Formula 1] R4—Si(R5)3 [Chemical Formula 2] Si(R6)4. [Chemical Formula 3]
Abstract:
A positive photosensitive siloxane resin composition includes a) a siloxane copolymer obtained by performing hydrolysis and condensation polymerization of i) at least one reactive silane represented by the following Chemical Formula 1 and ii) at least one 4-functional reactive silane represented by the following Chemical Formula 2 under a catalyst, the copolymer having a polystyrene-converted weight average molecular weight Mw of 1,000 to 20,000, b) a 1,2-quinonediazide compound, and c) a solvent, (R1)nSi(R2)4-n [Chemical Formula 1] Si(R3)4 [Chemical Formula 2] wherein R1s may each independently be any one of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 15 carbon atoms, R2 may be an alkoxy group having 1 to 4 carbon atoms, phenoxy, or acetoxy, Ras may each independently be any one of an alkoxy group having 1 to 4 carbon atoms, phenoxy, or an acetoxy group, and n may be a natural number of 1 to 3.
Abstract:
A method for forming a pattern includes forming a photosensitive film by coating a photosensitive resin composition on a substrate, exposing the photosensitive film to light through a mask that includes a light transmission region and a non-light transmission region, coating a developing solution on the photosensitive film, and forming a photosensitive film pattern by baking the photosensitive film, wherein the photosensitive resin composition includes an alkali soluble base resin, a photoacid generator and a photoactive compound.
Abstract:
A photomask for exposure includes: a transparent substrate; a light blocking pattern layer positioned on the transparent substrate; a first dielectric layer positioned on the light blocking pattern layer and including a dielectric material; and a negative refractive index layer positioned on the first dielectric layer and including a metal. A surface plasmon quasi-bound mode of the photomask for exposure overlaps a wavelength range of the light source of the light exposer which irradiates light to the photomask for exposure.
Abstract:
A display device is provided. The display device comprises a substrate, at least one thin-film transistor disposed on the substrate, a planarization layer disposed on the thin-film transistor, a first metal layer disposed on the planarization layer and connected to the thin-film transistor, a first electrode disposed on the first metal layer, partitioning walls disposed on the planarization layer and spaced apart from the first electrode, wherein each of the partitioning walls includes a second metal layer and a first conductive layer, a pixel defining layer disposed on the first electrode and the partitioning walls, an organic layer disposed on the first electrode and the pixel defining layer, and a second electrode disposed on the organic layer, wherein the second metal layer is disposed under the first conductive layer and has an undercut beneath the first conductive layer, wherein at least portion of the organic layer is discontinuous between the partitioning walls.
Abstract:
An input sensing unit includes a base including light-transmitting areas and non-light transmitting areas. A light absorbing pattern is provided corresponding to the non-light transmitting areas and is configured to absorb incident light. A sensing electrode overlaps the light absorbing pattern. The light absorbing pattern has an aperture for exposing a light-transmitting area of the light-transmitting areas. A boundary of the aperture and an outer boundary of the light-transmitting area are spaced apart from each other. The input sensing unit has improved viewing angle/luminance ratio and improved characteristics of reflective color.
Abstract:
An organic light-emitting display device including: a substrate; a pixel electrode on the substrate; a pixel defining film on the pixel electrode and having a first opening at least partially exposing the pixel electrode; an organic light-emitting layer on the exposed portion of the pixel electrode; a common electrode on the organic light-emitting layer and the pixel defining film; an encapsulation layer on the common electrode; a black matrix on the encapsulation layer and having a second opening overlapping the first opening; and a plurality of first sensing lines on the black matrix and surrounding the pixel electrode in a plan view to define a pixel region. At least portions of the first sensing lines defining the pixel region do not overlap the common electrode in the pixel region.