Abstract:
A light emitting device including first and second electrodes spaced apart from each other on a substrate, at least one bar-type LED having a first end on the first electrode and a second end on the second electrode, and an insulative support body between the substrate and the bar-type LED. The at least one bar-type LED has a length greater than a width.
Abstract:
A display device includes a plurality of data lines to supply data voltages, a plurality of scan lines to supply scan signals, and a first pixel connected to at least one of the plurality of data lines, and connected to at least one of the plurality of scan lines, the first pixel including a first light-emitting diode of a first color, in which an anode is connected to a first node and a cathode is connected to a reference voltage line, and a second light-emitting diode of a second color that is different from the first color, in which an anode is connected to the reference voltage line, and a cathode is connected to the first node.
Abstract:
An image processing device includes a first look-up table in which first gamma correction values corresponding to a white grayscale are recorded; a second look-up table in which second gamma correction values corresponding to red, green, and blue grayscales are recorded; and a data correcting unit that calculates second image data from received first image data based on a first gamma correction value and a second gamma correction value for the first image data, by referring to the first and second look-up tables.
Abstract:
A wide viewing angle liquid crystal display includes color filters having a quantum dot and scattering particles and liquid crystal layer disposed in a microcavity, a distance between the color filter and the liquid crystal layer being sized to minimize display deterioration due to parallax.
Abstract:
A wide viewing angle liquid crystal display includes color filters having a quantum dot and scattering particles and liquid crystal layer disposed in a microcavity, a distance between the color filter and the liquid crystal layer being sized to minimize display deterioration due to parallax.
Abstract:
A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
Abstract:
A display device may include a substrate, pixels disposed on the substrate, each of the pixels including a first electrode, a second electrode, and a plurality of light emitting elements electrically connected between the first and the second electrodes, and a first oscillator disposed on the substrate and electrically connected to a first electrode of a first pixel of the pixels, the first oscillator including at least one transistor and at least one capacitor.
Abstract:
An apparatus for manufacturing a light emitting display device includes a substrate transfer stage including a plurality of support plates arranged at an interval in a first direction, each of the plurality of support plates extending in a second direction; and at least one electric-field application module disposed on at least one side of the substrate transfer stage. The at least one electric-field application module includes a probe head including at least one probe pin; and a driver connected to the probe head to move the probe head at least up and down.
Abstract:
A pixel includes electrode pairs successively disposed in a first direction, and each including a first sub-electrode and a second sub-electrode successively disposed in the first direction; light emitting elements each electrically connected between the first sub-electrode and the second sub-electrode of any one the electrode pairs; a first connection electrode electrically connected between the first sub-electrode of a first electrode pair and a first power supply; and a second connection electrode electrically connected between the second sub-electrode of a last electrode pair and a second power supply. The second sub-electrode of a remaining electrode pair other than the last electrode pair is spaced apart from the first sub-electrode of a subsequent electrode pair with at least one first sub-electrode or at least one second sub-electrode disposed therebetween, and is electrically connected to the first sub-electrode of the subsequent electrode pair.
Abstract:
A dipole alignment device includes an electric field forming part including a stage, and a probe part which form an electric field on the stage; an inkjet printing apparatus including at least one inkjet head which sprays ink including dipoles and a solvent with the dipoles dispersed therein onto the stage; a transportation part comprising a first moving part which moves the electric field forming part in at least one direction; and a light irradiation apparatus including a light irradiation part which applies light to the ink sprayed onto the stage.