Abstract:
A display device includes a first substrate including a display region and a non-display region, the non-display region being positioned on an outside of the display region, a first dam in the non-display region of the substrate, the first dam including a first barrier and a first stopper, the first stopper being on the first barrier and having a concave groove formed thereon, and a first alignment layer covering the display region of the first substrate, at least a part of the first alignment layer extending to the non-display region and contacting a surface of the first stopper.
Abstract:
A display device includes: a first substrate including a display area and a non-display area which is arranged outside the display area; a first dam which is disposed in the non-display area of the first substrate and which includes a first stopper having a recessed groove at a surface thereof; and a first alignment layer which covers the display area of the first substrate, the first alignment layer defining a first portion thereof which extends to the non-display area and terminates at the surface of the first stopper.
Abstract:
A liquid crystal display according to exemplary embodiment of the present system and method includes: an insulating substrate; a thin film transistor positioned on the insulating substrate; a pixel electrode connected to the thin film transistor; a common electrode spaced apart from the pixel electrode while facing the pixel electrode; a liquid crystal layer injected into a microcavity between the pixel electrode and the common electrode; a roof layer formed on the common electrode; an injection hole positioned in the roof layer and the common electrode; an overcoat configured to cover the injection hole and partially overlap the roof layer; a film layer positioned on the overcoat and the roof layer; and a flattening layer positioned on the film layer.
Abstract:
A display device according to an exemplary embodiment of the present invention having each pixel that comprises first and second subpixel areas, and an outer partition may be formed along a row direction between a plurality of liquid crystal layers, and the outer partition may separate a first liquid crystal injection hole and a second liquid crystal injection hole of two liquid crystal layers that are adjacent to each other along a column direction, thus liquid crystals are separated rather than being mixed with each other and fill their corresponding microcavities of the first and second subpixels areas.
Abstract:
A method for forming a pattern includes forming a photosensitive film by coating a photosensitive resin composition on a substrate, exposing the photosensitive film to light through a mask that includes a light transmission region and a non-light transmission region, coating a developing solution on the photosensitive film, and forming a photosensitive film pattern by baking the photosensitive film, wherein the photosensitive resin composition includes an alkali soluble base resin, a photoacid generator and a photoactive compound.
Abstract:
A display device is provided. The display device includes a substrate including a plurality of pixel areas; a thin film transistor disposed on the substrate; a first insulating layer disposed on the thin film transistor; a pixel electrode connected to the thin film transistor and disposed on the first insulating layer; a common electrode separated from the pixel electrode with a microcavity interposed therebetween; a second insulating layer disposed on the common electrode; a roof layer disposed on the second insulating layer; a hydrophobic layer disposed on the roof layer and including a plurality of protrusions; an injection hole disposed in the common electrode, the second insulating layer, and the roof layer, the injection hole exposing a portion of the microcavity; a liquid crystal layer for filling the microcavity; and an overcoat formed on the roof layer and covering the injection hole, so as to seal the microcavity.
Abstract:
A display device includes a first base layer, a circuit layer above the first base layer, a silicon substrate above the circuit layer, a light-emitting element above the silicon substrate, and electrically connected to the circuit layer through an opening defined by the silicon substrate, and a second base layer above the silicon substrate and the light-emitting element.
Abstract:
A display device includes: a pixel circuit layer including a plurality of transistors; first partition wall and a second partition wall on the pixel circuit layer, each of the first and second partition walls having a shape protruding in a thickness direction; a first electrode and a second electrode on the same layer and respectively on the first partition wall and the second partition wall; a light emitting element between the first electrode and the second electrode; and a semiconductor pattern directly on the first electrode.
Abstract:
A display device includes: a first substrate; a second substrate on the first substrate and exposing a first edge portion of the first substrate, the second substrate protruding beyond a second edge portion of the first substrate; a connection line on the first edge portion of the first substrate, the connection line having a first end portion protruding beyond a first side of the second substrate and a second end portion covered by the second substrate; and a thin-film transistor layer on the second substrate and connected to the connection line. The thin-film transistor layer includes signal lines extending from the first side to a second side of the second substrate. The signal lines extend into contact openings in the thin-film transistor layer and are exposed at a lower part of the second substrate on the second side of the second substrate.
Abstract:
The present disclosure may provide a display device and method of fabricating the same. According to one or more embodiments, a display device includes a first substrate including pixel circuit units, a plurality of light-emitting elements on the first substrate, a partition wall filling gaps between the light-emitting elements and providing spaces in emission areas, on the light-emitting elements and wavelength conversion layers in the spaces.