Abstract:
Provided are a memory device and a method of manufacturing the same. Memory cells of the memory device are formed separately from first electrode lines and second electrode lines, wherein the second electrode lines over the memory cells are formed by a damascene process, thereby avoiding complications associated with CMP being excessively or insufficiently performed on an insulation layer over the memory cells.
Abstract:
A semiconductor device includes a first electrode on a substrate, a selection device pattern, a variable resistance layer pattern, a first protective layer pattern, a second protective layer pattern and a second electrode. The selection device pattern is wider, in a given direction, than the variable resistance layer pattern. The first protective layer pattern is formed on a first pair of opposite sides of the variable resistance layer pattern. The second protective layer pattern is formed on a second pair of opposite of the variable resistance layer pattern. The second electrode is disposed on the variable resistance layer pattern.
Abstract:
A method of measuring a step height of a device using a scanning electron microscope (SEM), the method may include providing a device which comprises a first region and a second region, wherein a step is formed between the first region and the second region, obtaining a SEM image of the device by photographing the device using a SEM, wherein the SEM image comprises a first SEM image region for the first region and a second SEM image region for the second region, converting the SEM image into a gray-level histogram and calculating a first peak value related to the first SEM image region and a second peak value related to the second SEM image region, wherein the first peak value and the second peak value are repeatedly calculated by varying a focal length of the SEM, and determining a height of the step by analyzing a trend of changes in the first peak value according to changes in the focal length and a trend of changes in the second peak value according to the changes in the focal length.
Abstract:
Semiconductor devices are provided. The semiconductor devices may include an isolation pattern and first, second, and third active regions of a substrate. The first active region may be spaced apart from the second active region by a first width of the isolation pattern in a direction. A gate structure may be between the first and second active regions and may include a second width wider than the first width of the isolation pattern in the direction. Related methods of forming semiconductor devices are also provided.