Abstract:
A bio imaging system includes a plurality of light emitters configured to irradiate light, and a plurality of sensors configured to detect light reflected by an internal tissue of a living body. Each sensor includes a plurality of photo-detecting elements having different absorption peak wavelengths in relation to each other.
Abstract:
Disclosed is a biosensor including a light-emitting element, a photo-detective element, a light transmitting layer under the light-emitting element and the photo-detective element, and an optical structure inside the light transmitting layer and configured to control a propagation direction of light, a biosensor array and a device.
Abstract:
A stretchable device includes a substrate, the substrate including first regions having a first stiffness and a second region between adjacent first regions and having a second stiffness that is lower than the first stiffness, a unit device array including unit devices on separate, respective first regions of the substrate, and an encapsulant covering the unit device array. The unit device array includes pixel electrodes isolated on separate, respective first regions of the substrate, common electrodes isolated on separate, respective first regions and each facing a separate pixel electrode, the stretchable device configured to apply a same voltage to the plurality of common electrodes, and active layers on separate, respective first regions and each between a separate pixel electrode and a separate common electrode.
Abstract:
An insulating ink includes a nanoparticle bonded with a substituent having a polymerizable functional group, at least one of an organosilane compound and polyorganosiloxane, and a solvent.
Abstract:
A bio imaging system includes a plurality of light emitters configured to irradiate light, and a plurality of sensors configured to detect light reflected by an internal tissue of a living body. Each sensor includes a plurality of photo-detecting elements having different absorption peak wavelengths in relation to each other.
Abstract:
A stretchable device includes a substrate, the substrate including first regions having a first stiffness and a second region between adjacent first regions and having a second stiffness that is lower than the first stiffness, a unit device array including unit devices on separate, respective first regions of the substrate, and an encapsulant covering the unit device array. The unit device array includes pixel electrodes isolated on separate, respective first regions of the substrate, common electrodes isolated on separate, respective first regions and each facing a separate pixel electrode, the stretchable device configured to apply a same voltage to the plurality of common electrodes, and active layers on separate, respective first regions and each between a separate pixel electrode and a separate common electrode.
Abstract:
A stretchable device includes a stretchable substrate, and a plurality of optoelectronic diodes on the stretchable substrate. At least one optoelectronic diode includes a first electrode and a second electrode, and an active layer between the first electrode and the second electrode. The active layer includes a first semiconductor, a second semiconductor having different electrical characteristics from the first semiconductor, and an insulating elastomer.
Abstract:
A stretchable device includes a stretchable substrate having a plurality of incision lines that are configured to be deformable by an external force applied to the stretchable substrate, a plurality of active elements on the stretchable substrate, and a connection wire configured to electrically connect adjacent active elements of the plurality of active elements, wherein the connection wire includes a metal wire and a conductive elastic structure electrically connected to the metal wire and locally disposed in the connection wire.
Abstract:
A stretchable strain sensor may exhibit wavelength selectivity according to a thickness change of a thickness of the stretchable strain sensor, in a thickness direction extending parallel to the thickness of the stretchable strain sensor, due to elongation of the stretchable strain sensor in an elongation direction extending perpendicular to the thickness direction. The stretchable strain sensor may have an emission spectrum that changes according to strain variation of a strain on the stretchable strain sensor.
Abstract:
Disclosed are a thin film transistor includes a gate electrode, an active layer including a semiconductor material and a first elastomer, a gate insulator between the gate electrode and the active layer, and a source electrode and a drain electrode electrically connected to the active layer, wherein each of the semiconductor material and the first elastomer has a hydrogen bondable moiety, and the semiconductor material and the first elastomer are subjected to a dynamic intermolecular bonding by a hydrogen bond and a thin film transistor array and an electronic device including the same.