Abstract:
According to an embodiment of the present invention, a method whereby a terminal receives scheduling data in a wireless communication system using beamforming comprises the processes of: receiving scheduling data via a first scheduling channel from a first base station; and receiving scheduling data via at least one second scheduling channel, by using at least one receiving beam from at least one second base station that cooperates (cooperate) with the first base station.
Abstract:
A method for a serving base station to determine a handover time in a communication system is provided. The method includes determining whether to set up dual connectivity (DC) with respect to a terminal with a target base station that transmits the beacon if it is recognized that the terminal receives a beacon including a plurality of pieces of service coverage area information, and determining whether to execute a handover to the target base station based on a measurement report of the terminal, which is received after the DC is set up if the DC is set up.
Abstract:
A method of determining member Base Stations (BSs) providing cooperative communication to a Mobile Station (MS) in a communication system. The method includes when a candidate list of the member BSs generated using at least one of strengths of signals received from adjacent BSs and cell loading state information of the adjacent BSs is received from the MS, selecting candidate BSs having a service quality larger than or equal to a threshold from candidate BSs included in the candidate list as targets to receive a member negotiation; and performing a capability negotiation with each of the selected targets to receive the member negotiation to select final member BSs and transmitting information on the determined final member BSs to the MS.
Abstract:
A method for receiving data in a User Equipment (UE) in a mobile content network is provided. The method includes transmitting a request message, which requests a content, to a first Digital Unit (DU), receiving an Internet Protocol (IP)_ADD message, including information of a second DU which caches the content, from the first DU, updating a Stream Control Transmission Protocol (SCTP) connection according to the information of the second DU included in the IP_ADD message, and receiving data from the second DU using the updated SCTP connection.
Abstract:
Provided is a method for providing a service by a Base Station (BS) in a wireless communication system. The method includes setting up a radio link to a Mobile Station (MS) to provide the service; receiving BS information from at least one BS that cooperates to provide the service; and selecting an alternative BS for replacing the BS from among the at least one BS based on the BS information.
Abstract:
When a Mobile Node (MN) is assigned IP addresses, the number of which is greater than or equal to the preset number of IP addresses that the MN is capable of being assigned with, the MN identifies information on the pre-emption vulnerability of each session associated with an IP address, and releases an IP address which enables a disconnection of a session. When there are multiple IP addresses associated with the pre-emptable sessions, a consideration is given to multiple conditions related to which IP address is to be selected, one IP address is selected, and the relevant IP address is released. When any IP address cannot be released, a new session is associated with an IP address which can give the smallest overhead to the MN and the network among the existing IP addresses, so that an IP address can be efficiently assigned.
Abstract:
A method and an apparatus for performing Transmission Control Protocol (TCP) communication at a network node in a wireless communication system are provided. The method includes receiving, by the network node that connects between a Mobile Station (MS) and a data network, a TCP KeepAlive packet for maintaining a TCP connection established between a correspondent node and the MS through the data network from the correspondent node, transmitting, by the network node, when it is determined that the MS is in an idle mode upon receiving the TCP KeepAlive packet, an acknowledgement packet in response to the TCP KeepAlive packet to the correspondent node, and transmitting, by the network node, indication information indicating the reception of the TCP KeepAlive packet to the MS.
Abstract:
Methods and apparatuses are provided for operating a Machine-to-Machine (M2M) Subscriber Station (SS) for a time-controlled service in an M2M communication system. The M2M SS registers the time-controlled service. The M2M SS establishes a service flow with an M2M Base Station (BS), after registering the time-controlled service. Data is transferred, from the M2M SS, to the M2M BS, through the service flow during an access admission time period. Transmission of the data to the M2M BS is ceased during an access restriction time period.
Abstract:
A method of determining member Base Stations (BSs) providing cooperative communication to a Mobile Station (MS) in a communication system. The method includes when a candidate list of the member BSs generated using at least one of strengths of signals received from adjacent BSs and cell loading state information of the adjacent BSs is received from the MS, selecting candidate BSs having a service quality larger than or equal to a threshold from candidate BSs included in the candidate list as targets to receive a member negotiation; and performing a capability negotiation with each of the selected targets to receive the member negotiation to select final member BSs and transmitting information on the determined final member BSs to the MS.
Abstract:
Beam selection is provided. A method for handover in a mobile station includes sending a scan request message for scanning a downlink (DL) beam with respect to a serving base station (BS) and a neighboring BS, to the serving BS, and receiving a scan response message; determining the DL beam for the MS by performing scanning with the serving BS and the neighboring BS based on the scan response message; sending a scan report message comprising a result of the scanning to the serving BS; when receiving an air-HO request message from the serving BS, generating an air-HO response message comprising information of a neighboring BS to which the MS hands over based on the air-HO request message; performing beam selection with the neighboring BS of the handover based on the air-HO request message; and performing the handover.