Abstract:
A liquid crystal display device, includes: a liquid crystal panel; a point light source which emits light to the liquid crystal panel; and a light source driver which comprises a power input terminal to receive initial power, a power supply to supply power to the point light source according to the initial power and a reference current, and a reference current controller to output the changed reference current according to the changed initial power, to the power supply.
Abstract:
A method and apparatus for generating synthesis audio signals are provided. The method includes decoding a bitstream; splitting the decoded bitstream into n sub-band signals; generating n transformed sub-band signals by transforming the n sub-band signals in a frequency domain; and generating synthesis audio signals by respectively multiplying the n transformed sub-band signals by values corresponding to synthesis filter bank coefficients.
Abstract:
A cable connector for transmitting a signal between first and second electronic devices includes a cable including at least one signal line disposed within a sheath; and a connector disposed at a first end portion of the cable. The connector includes a rotation member connected to the cable; a main body including a rotation member mounting portion to which the rotation member is rotatably connected; and a sub body that has a plug disposed at a first end portion, wherein the sub body is moveably connected to the main body.
Abstract:
A display apparatus and a displaying method generate caption information using depth information of an estimated main object area of a three-dimensional (3D) image, and combine a caption with the 3D image according to the generated caption information and display the caption-combined 3D image.
Abstract:
A display apparatus is provided. The display apparatus includes: a display panel; and a backlight unit which provides the display panel with backlight. The backlight unit includes: a converter which converts a voltage of a received power and outputs an output power, a plurality of light source modules which receives the output power from the converter, and a control unit which determines powering conditions to operate the plurality of the light source modules in a specific state for each of the plurality of light source modules, and controls the converter sequentially based on the determined powering conditions.
Abstract:
A display apparatus and a backlight unit which control a plurality of lamps, and a display driving method are provided. The display apparatus includes a display, and a backlight unit which provides a backlight to the display. The backlight includes a plurality of lamps, and a lamp driver which adjusts a frequency of power supplied to the plurality of lamps until all of the plurality of lamps enter a running mode.
Abstract:
A multi-channel audio signal encoding and decoding method and apparatus are provided. The multi-channel audio signal encoding method, the method including: obtaining semantic information for each channel; determining a degree of similarity between multi-channels based on the obtained semantic information for each channel; determining similar channels among the multi-channels based on the determined degree of similarity between the multi-channels; and determining spatial parameters between the similar channels and down-mixing audio signals of the similar channels.
Abstract:
A method of controlling a hybrid hard disk drive. The method includes receiving a read command from a host; searching metadata of a file to be read; determining whether the metadata satisfies a predetermined setup condition; and if the metadata satisfies the setup conditions, copying the file to be read, from a first storage device and storing the file in a second storage device.
Abstract:
A manufacturing method of an optical member includes forming an optical film which has a first glass transition temperature and includes a pattern formed on a surface of the optical film, and an optical plate which has a second glass transition temperature that is lower than the first glass transition temperature, disposing the optical film and the optical plate adjacent each other so that the pattern faces the optical plate, pressurizing the optical film and the optical plate while heating the optical plate to the second glass transition temperature or higher, and forming the optical member by the pressurizing and the heating.