Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled to the charged particle source, and an input voltage modulator coupled to the voltage ladder and supplying an amplitude modulated signal thereto. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
An energy management system for enhancing design and operation of a distributed energy resource system includes a two-level design system and a hierarchical optimization-based control system. The two-level design system includes a top-level designer configured to coordinate decentralized bottom-level designers for individual energy resources to seek a global target for the designed distributed energy resource system that satisfies the energy demand of a target deployment location within a confidence level, and multiple bottom-level designers configured to enhance detailed designs of local energy sub-systems. The hierarchical optimization-based control system include a primary controller configured to determine a long-term operational schedule based on long-term constraints and future events at a first level, one or more secondary controllers configured to control daily orchestrations of the distributed energy resource system during operation at a second level, and multiple tertiary controllers and aggregators configured to rapidly adjust various hardware at a third level.
Abstract:
A wellhead container for a geothermal system includes a base configured to engage a bottom of a recess within a ground. The recess extends vertically from the bottom of the recess to a surface of the ground, the base includes at least one first opening, and the at least one first opening is configured to receive a drilling string. The wellhead container includes a top configured to support a load applied by a drilling machine to the wellhead container. The top includes second openings, and each second opening is configured to receive the drilling string. The wellhead container includes a sidewall extending along a vertical axis between the base and the top. The sidewall is configured to position an upper surface of the top substantially flush with the surface of the ground, and the sidewall is configured to transfer at least a portion of the load to the base.
Abstract:
Certain aspects of the present disclosure provide techniques for recovery of waste energy from a battery energy storage system. A system includes a battery energy storage system including one or more rechargeable batteries; an energy recovery system coupled to the battery energy storage system, wherein the energy recovery system is configured to: capture heat generated by one or more of charging and discharging the one or more rechargeable batteries; and store or use energy associated with the captured heat.
Abstract:
A method of producing a geothermal well includes obtaining site information including at least a site volume; obtaining drilling parameters; determining lengths and orientations of planned wellbores based at least partially on the site information and the drilling parameters.
Abstract:
A downhole tool may include a high-voltage power supply disposed within a housing to transform input power to the downhole tool from a first voltage to a second voltage greater than the first voltage. The high-voltage power supply may include an array of capacitors, which may include multiple rows of capacitors. The rows of capacitors may be parallel with a symmetric cross section as viewed from an end of the array of capacitors. The high-voltage power supply may also include diodes electrically coupled to the array of capacitors.
Abstract:
A downhole tool may include a voltage multiplier within a housing. The voltage multiplier may transform input power to the downhole tool from a first voltage to a second voltage higher than the first. The downhole tool may also include multiple shielding rings surrounding at least the voltage multiplier to reduce electric field stresses within the downhole tool. Additionally, the downhole tool may include an insulator located between the shielding rings and the housing.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.