Abstract:
An input attenuator may include a first input circuit having an RF_IN+ terminal, a first node, a transmission line, a DC blocking capacitor, a second node, a third node, and an output terminal coupled in series, the first node selectively coupled to ground via a serially coupled capacitor and a first silicon germanium heterojunction bipolar transistor, the second node coupled to ground via a capacitor, and the third node selectively coupled to ground via a DC blocking capacitor, a resistor, and a second silicon germanium heterojunction bipolar transistor coupled in series. The input attenuator may also include a second input circuit parallel to the first input circuit and having structure similar to the first input circuit.
Abstract:
A method of generating an output signal from an input signal includes a step of generating a set of n signals, n being an integer greater than or equal to 3, by generating a signal for each integer i such that 0≦i≦(n−1), each signal within the set having the same frequency and approximately equal amplitude and a phase equal to (360/n)i degrees. The method also includes a step of inputting each of the set of n signals to a gate terminal of a corresponding one of a set of n transistors. Each of the transistors has a source terminal electrically connected to a common voltage drain and each of the transistors has a drain terminal electrically connected to a coupling. The coupling is electrically connected to a common voltage source. The output signal at the coupling has a frequency equal to the frequency of the input signal multiplied by n.
Abstract:
A circuit includes an amplifier having an input and an output; and at least one transistor comprising at least one terminal and at least one isolated well. The input of the amplifier is electrically connected to the at least one terminal of the transistor; and the output of the amplifier is electrically connected to the at least one isolated well of the at least one transistor.
Abstract:
A transverse form analog finite impulse response filter. The filter has an input and an output. A first set of passive delay elements connected in serial to the input, and a second set of passive delay elements are connected in serial to the output. Transconductors are connected in parallel with the first plurality of passive delay elements and the second plurality of passive delay elements. A set of buffer amplifiers is connected to the passive delay elements in the first set of passive delay elements and in the set of passive delay elements. The buffer amplifiers cause a reduction in loss in the passive delay elements.
Abstract:
A method for detecting and compensating for thermal asperity in data signals, including the steps of detecting thermal asperity in the data signals and adjusting a parameter prior to amplification of the data signals.
Abstract:
A method of making Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin is disclosed for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.
Abstract:
Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and a method of making such interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.
Abstract:
A sub-harmonic mixer includes a first transistor having a source and a drain and a second transistor having a source connected to the source of the first transistor and a drain connected to the drain of the first transistor. A mixing transistor is configured to be biased in a linear operating region. The mixing transistor includes a drain coupled to the sources of the first transistor and the second transistor. The mixing transistor has its drain driven by a signal at twice a local oscillator (LO) frequency and its gate driven by a radio frequency (RF) signal while the mixing transistor is biased in the linear region such that a process of frequency doubling and mixing are performed simultaneously.
Abstract:
A differential cross-coupled power combiner in one aspect comprises a plurality of inputs, an output, a plurality of differential transmission lines each coupled between a corresponding one of the inputs and the output, and at least one set of additional differential transmission lines arranged in series between any two of the inputs. First and second ones of the additional differential transmission lines in the set are coupled to one another using a cross-coupling arrangement. Other aspects of the invention provide a differential cross-coupled power divider, communication system receivers and transmitters incorporating respective power combiners and dividers, and integrated circuit implementations of power combiners and dividers.
Abstract:
A sub-harmonic mixer includes a first transistor having a source and a drain and a second transistor having a source connected to the source of the first transistor and a drain connected to the drain of the first transistor. A mixing transistor is configured to be biased in a linear operating region. The mixing transistor includes a drain coupled to the sources of the first transistor and the second transistor. The mixing transistor has its drain driven by a signal at twice a local oscillator (LO) frequency and its gate driven by a radio frequency (RF) signal while the mixing transistor is biased in the linear region such that a process of frequency doubling and mixing are performed simultaneously.