Abstract:
Noble metal plating on a preexisting seed layer is used in the fabrication of electrodes for DRAM and FRAM. The plating may be spatially selective or nonselective. In the nonselective case, a blanket film is first plated and then patterned after deposition by spatially selective material removal. In the selective case, the plated deposits are either selectively grown in lithographically defined areas by a through-mask plating technique, or selectively grown as a conformal coating on the exposed regions of a preexisting electrode structure. A diamond-like carbon mask can be used in the plating process. A self-aligned process is disclosed for selectively coating insulators in a through-mask process.
Abstract:
This invention is directed to a semiconductor memory device including a storage element having a ferroelectric material or a capacitor dielectric material between a top (plate) electrode and a bottom (stack) electrode. In particular, the invention pertains to the design and fabrication of the stack electrode, which is described as compound because it is comprised of two or more materials which are either patterned separately (with at least one material being deposited and patterned prior to the deposition of the others), or arranged so that each of the component materials significantly contributes to the area over which the ferroelectric or capacitor dielectric is initially deposited. These compound stack electrodes may offer ease in processing, more economical use of noble metal materials, and potentially increased mechanical stability (e.g., resistance to hillocking) relative to solid, single-material electrodes of the same dimensions.
Abstract:
A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
Abstract:
A method for forming a copper conductor in an electronic structure by first depositing a copper composition in a receptacle formed in the electronic structure, and then adding impurities into the copper composition such that its electromigration resistance is improved is disclosed. In the method, the copper composition can be deposited by a variety of techniques such as electroplating, physical vapor deposition and chemical vapor deposition. The impurities which can be implanted include those of C, O, Cl, S and N at a suitable concentration range between about 0.01 ppm by weight and about 1000 ppm by weight. The impurities can be added by three different methods. In the first method, a copper seed layer is first deposited into a receptacle and an ion implantation process is carried out on the seed layer, which is followed by electroplating copper into the receptacle. In the second method, a copper seed layer is first deposited into a receptacle, a copper composition containing impurities is then electrodeposited into the receptacle and the electronic structure is annealed so that impurities diffuse into the copper seed layer. In the third method, a barrier layer is first deposited into a receptacle, dopant ions are then implanted into the barrier layer with a copper seed layer subsequently deposited on top of the barrier layer. An annealing process for the electronic structure is then carried out such that dopant ions diffuse into the copper seed layer. The present invention method may further include the step of ion-implanting at least one element into a surface layer of the copper conductor after the conductor is first planarized. The surface layer may have a thickness between about 30 Å and about 500 Å. At least one element may be selected from Co, Al, Sn, In, Ti and Cr.
Abstract:
A process is described for the fabrication of submicron interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of CU electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
Abstract:
A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
Abstract:
A method for forming a copper conductor in an electronic structure by first depositing a copper composition in a receptacle formed in the electronic structure, and then adding impurities into the copper composition such that its electromigration resistance is improved. In the method, the copper composition can be deposited by a variety of techniques such as electroplating, physical vapor deposition and chemical vapor deposition. The impurities which can be implanted include those of C, O, Cl, S and N at a suitable concentration range between about 0.01 ppm by weight and about 1000 ppm by weight. The impurities can be added by different methods such as ion implantation, annealing and diffusion.
Abstract:
A method for forming metal interconnect in a semiconductor structure and the structure formed are disclosed. In the method, a seed layer of a first metal is first deposited into an interconnect opening wherein the seed layer has an average grain size of at least 0.0005 &mgr;m. The semiconductor structure is then annealed at a temperature sufficient to grow the average grain size in the seed layer to at least the film thickness. A filler layer of a second metal is then deposited to fill the interconnect opening overlaying the seed layer such that the filler layer has an average grain size of larger than 0.0005 &mgr;m and comparable to the annealed seed layer.
Abstract:
A method for forming metal interconnect in a semiconductor structure and the structure formed are disclosed. In the method, a seed layer of a first metal is first deposited into an interconnect opening wherein the seed layer has an average grain size of at least 0.0005 &mgr;m. The semiconductor structure is then annealed at a temperature sufficient to grow the average grain size in the seed layer to at least the film thickness. A filler layer of a second metal is then deposited to fill the interconnect opening overlaying the seed layer such that the filler layer has an average grain size of larger than 0.0005 &mgr;m and comparable to the annealed seed layer.
Abstract:
A method of making Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin is disclosed for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.