Abstract:
Solar cell conductor formulations made are from two silver powders having different particle size distributions, an aluminum powder, and two frit glass compositions having softening points in the range of 250-700° C. and whose softening points differ by at least 10° C.
Abstract:
Formulations and methods of making solar cell contacts and cells therewith are disclosed. In general, the invention provides a solar cell comprising a contact made from a mixture wherein, prior to firing, the mixture comprises at least one aluminum source, at least one source of a metal including one or more of boron, titanium, nickel, tin, gallium zinc, indium, and copper, and about 0.1 to about 10 wt % of a glass component. Within the mixture, the overall content of aluminum is about 50 wt % to about 85 wt % of the mixture, and the overall combined content of boron, nickel, tin, silver, gallium, zinc, indium, copper, is about 0.05 to about 40 wt % of the mixture.
Abstract:
Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
Abstract:
Al pastes with additives of Co, Sr, V, compounds thereof and combinations thereof improve both the physical integrity of a back contact of a silicon solar cell as well as the electrical performance of a cell with such a contact.
Abstract:
A delivery catheter that includes a flexible shaft having a proximal end and a distal end, the distal end having an outer diameter less than about 13 mm; a delivery lumen having a proximal end and a distal end, the delivery lumen within the flexible shaft, the delivery lumen having at least an outlet port or at least one side hole at the distal end of the delivery lumen, the delivery lumen having a cross-sectional area at least about 5 mm2; a pressure monitoring lumen having a proximal end and a distal end, the pressure monitoring lumen within the flexible shaft; a pressure port adjacent to and connected to the distal end of the pressure monitoring lumen; a balloon inflation lumen having a proximal end and a distal end, the balloon inflation lumen within the flexible shaft; a soft tip at the distal end of the flexible shaft; a balloon at the distal end of the flexible shaft, the balloon connected to the distal end of the balloon inflation lumen, the balloon includes at least one of the following materials, polyether block amide resin, polyetheramide, polyurethane, silicone, natural latex, or synthetic latex; wherein the balloon is adapted to inflate to a diameter range of about 4 to about 15 mm.
Abstract:
Formulations and methods of making solar cells are disclosed. In general, the invention presents a solar cell contact made from a mixture wherein the mixture comprises a solids portion and an organics portion, wherein the solids portion comprises from about 85 to about 99 wt % of a metal component, and from about 1 to about 15 wt % of a lead-free glass component. Both front contacts and back contacts are disclosed.
Abstract:
A mask for masking a stent during a coating procedure may include a mask body that has a negative pattern or an approximate negative pattern of a stent pattern being masked by the mask body. An apparatus for selectively coating a predetermined portion of a medical article may include a dispenser of a coating composition, a mask, a device for creating a relative movement between the mask and the medical article.
Abstract:
Methods of coating a stent subsequent to mounting or crimping of the stent on a balloon of a catheter assembly are disclosed. One method includes forming a sacrificial layer on a balloon of a catheter assembly; followed by mounting a stent on the balloon, the stent including struts separated by gaps; followed by forming a stent coating on the stent; and followed by removal of the sacrificial layer. Another method includes mounting a stent on a balloon, the stent including struts separated by gaps; followed by forming a sacrificial layer on the balloon in the areas of the gaps between struts of the stent; followed by forming a coating on the stent; and followed by removing the sacrificial layer, wherein the coating remains on an outer surface of the stent.
Abstract:
Methods are disclosed for controlling the morphology and the release-rate of active agent from coating layers for medical devices comprising a polymer matrix and one or more active agents. The methods comprise fixing the morphology or phase distribution of the active agent prior to removing solvent from the coating composition. The coating layers can be used for controlled the delivery of an active agent or a combination of active agents.
Abstract:
A delivery catheter that includes a flexible shaft having a proximal end and a distal end, the distal end having an outer diameter less than about 13 mm; a delivery lumen having a proximal end and a distal end, the delivery lumen within the flexible shaft, the delivery lumen having at least an outlet port or at least one side hole at the distal end of the delivery lumen, the delivery lumen having a cross-sectional area at least about 5 mm2; a pressure monitoring lumen having a proximal end and a distal end, the pressure monitoring lumen within the flexible shaft; a pressure port adjacent to and connected to the distal end of the pressure monitoring lumen; a balloon inflation lumen having a proximal end and a distal end, the balloon inflation lumen within the flexible shaft; a soft tip at the distal end of the flexible shaft; a balloon at the distal end of the flexible shaft, the balloon connected to the distal end of the balloon inflation lumen, the balloon includes at least one of the following materials, polyether block amide resin, polyetheramide, polyurethane, silicone, natural latex, or synthetic latex; wherein the balloon is adapted to inflate to a diameter range of about 4 to about 15 mm.