Abstract:
Systems and methods for enabling co-existence among power line communications (PLC) technologies are described. In some embodiments, a method performed by a PLC device, such as a PLC gateway, may include searching for and detecting a co-existence preamble on a PLC network while not transmitting or receiving frames. The device waits a time period before attempting transmission of a frame if the coexistence preamble is detected and is not followed by a native preamble. Transmissions are resumed to the PLC network after expiration of the time period.
Abstract:
Embodiments of the invention provide systems and methods for a cipher then segment approach in a Power Line Communication (PLC). A node or device generates frames to be transmitted to a destination node in the PLC network. A processor in the node is configured to generate a data payload comprising data to be sent to the destination node. The processor divides the data payload into two or more payload segments and encrypts the payload segments. The processor creates a frame for each of the encrypted payload segments, wherein each frame comprises a message integrity code. The processor creates a segment identifier for each frame using the message integrity code and an authentication key that is shared with the destination PLC node. The segment identifier is added to each frame.
Abstract:
Apparatus (and related methods) for a power line communication network include a processor configured to receive beacons over a communication interface. The processor determines a link quality indicator (LQI) for each received beacon and ignores the beacons for at most a predetermined maximum number of beacon receptions when each LQI is below a threshold. The processor responds to a received beacon if the LQI for such received beacon exceeds the threshold or if a predetermined maximum number of beacons have been received with LQIs below the threshold.
Abstract:
Transmission over a communication channel using carrier sense multiple access collision avoidance (CSMA/CA) may be performed by determining for each frame if the communication channel is busy after a backoff time proportional to a randomly generated number within a contention window (CW). When the channel is not busy, a frame of data may be transmitted. When the channel is busy, the device may periodically determine if the communication channel is busy after subsequent backoff times. The value of CW is adjusted for each subsequent backoff time using a fairness protocol, in which the value of CW is increased until the value of CW reaches a maximum CW value; and then the value of CW is held until a fairness number of backoff repetitions reaches a fairness threshold; then the value of CW is reduced incrementally until the value of CW reaches a minimum CW value.
Abstract:
A wireless combination (combo) device is coupled to an antenna for communicating via a first wireless network over a first band. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
Segmented frames of data may be transmitted from a transmitting device using conflict free slots (CFS) within a carrier sense multiple access with collision avoidance (CSMA/CA) protocol on a noisy media. At a receiver, a segmented frame of data is received. The data is represented by a plurality of tones. If requested by the transmitter, a tone map response command is prepared that specifies a set of optimized tone map parameters by analyzing the received frame of data. Any previously determined tone map response commands to the transmitting device are deleted. A sequence of frame segments may be received in conflict free slots, but only one tone map response is transmitted to the transmitting device after receiving the entire sequence of frame segments.
Abstract:
Embodiments provide systems and methods to optimize the time when to receive transmissions from dissimilar wireless networks, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A receiver comprises at least two dissimilar network technology subsystems and is able to receive transmissions from dissimilar wireless network technology subsystems during a predetermined reception window.
Abstract:
A wireless combination (combo) device is coupled to an antenna for communicating via a first wireless network over a first band. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
A power line communication device connected to a power line communication network that includes a transceiver to transmit messages to a plurality of nodes on the network and to receive messages from the plurality of nodes on the network, and a processor coupled to the transceiver to evaluate received messages and generate messages to transmit. The processor, upon receiving a promotion needed message from an additional power line communication (PLC) device joining the network, is to determine whether data communication has already been established with a base node of the network, determine whether the device is already seeking promotion to be a switch node or has already been promoted to the switch node, and determine a signal quality of the received promotion needed message from the additional PLC device joining the network. Based on those determinations, the processor is to adjust a frequency at which to transmit a promotion request based on a number of promotion requests received from the plurality of other nodes on the network and a number of promotion needed messages received.
Abstract:
Embodiments provide systems and methods to optimize the time when to transmit a silencing frame, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A device comprises at least two dissimilar network technology subsystems, at least one subsystem of which is lower priority than at least another of the dissimilar subsystems. In some embodiments, a device is able to transmit a silencing frame during a transmission window within a lower priority technology network interval. In other embodiments, a device calculates a transmission window, the transmission window to occur within a lower priority technology network interval, and transmits a silencing frame during the transmission window. In further embodiments, a device is able to calculate a transmission window to occur during a lower priority technology network interval, and transmit a silencing frame during the calculated transmission window.