Abstract:
Disclosed examples include isolated phase shifted dual active bridge DC to DC converters with a first bridge circuit operative according to a primary side clock signal to provide a primary voltage signal to a transformer primary winding, a second bridge circuit operative according to a secondary side clock signal to convert a secondary voltage signal from a transformer secondary winding to provide an output voltage signal, and a secondary side control circuit that alternately operates in a first mode to regulate the output voltage signal by controlling a phase shift angle between switching transitions of secondary side switching control signals and switching transitions of the secondary side clock signal, and a second mode to discontinue the secondary side switching control signals and synchronize the secondary side clock signal to transitions in the secondary voltage signal while the secondary side switching control signals are discontinued.
Abstract:
Disclosed examples include multiple output DC to DC converters with a buck converter including a half bridge switching circuit and transformer primary winding to provide a first output voltage signal, as well as a boost converter to provide an isolated second output voltage signal. The boost converter includes a transformer secondary winding magnetically coupled with the primary winding to provide a boost converter inductor, a switching circuit, an output diode providing the second output voltage signal, and a PWM controller that synchronizes the boost converter switching with the low side switch of the buck converter based on a sensed voltage of the transformer secondary winding.
Abstract:
A semiconductor package is provided that has a transformer formed within a multilayer dielectric laminate substrate. The transformer has a first inductor coil formed in one or more dielectric laminate layers of the substrate, a second inductor coil formed in one or more dielectric laminate layers of the substrate, and an isolation barrier comprising two or more dielectric laminate layers of the multilayer substrate positioned between the first inductor coil and the second inductor coil. The transformer may be mounted on a lead frame along with one or more integrated circuits and molded into a packaged isolation device.
Abstract:
A method includes forming a first magnetic material on a first surface of a conductive loop, forming a second magnetic material on a second surface of the conductive loop opposite the first surface to form an inductor, attaching a semiconductor die to a leadframe, and attaching the inductor to the leadframe with solder balls. The semiconductor die is between the inductor and the leadframe. The conductive loop: spans parallel to the leadframe; or is between the first magnetic material and the second magnetic material.
Abstract:
In an integrated circuit (IC), a semiconductor substrate has a first side and an opposite second side. The second side has a trench. Circuitry is on the first side. An inductive structure is within the trench. The inductive structure is connected to the circuitry through vias in the semiconductor substrate. The semiconductor substrate is mounted on a package substrate. At least a portion of the inductive structure contacts the package substrate. The circuitry is coupled to the inductive structure through wires to the package substrate.
Abstract:
A semiconductor package includes a leadframe comprising input/output pins accessible external to the semiconductor package and a semiconductor die electrically connected to the leadframe. The semiconductor package also includes a passive electrical component mounted on a side of the semiconductor die opposite the leadframe. Mold compound encapsulates the passive electrical component, semiconductor die, and leadframe to form the semiconductor package. Associated methods are disclosed as well.
Abstract:
In at least some embodiments, a system comprises a frequency generator configured to generate a second clock signal having a second frequency using a first clock signal having a first frequency. The second frequency is offset from the first frequency and each of a plurality of harmonic frequencies of the second frequency is offset from a harmonic frequency of the first frequency. The system also includes a power converter configured to produce a power signal that at least partially corresponds to the second frequency. The system further comprises an analog-to-digital converter (ADC) configured to sample and convert analog voltages at the first frequency. The ADC is powered by the power signal.
Abstract:
In at least some embodiments, a system comprises a frequency generator configured to generate a second clock signal having a second frequency using a first clock signal having a first frequency. The second frequency is offset from the first frequency and each of a plurality of harmonic frequencies of the second frequency is offset from a harmonic frequency of the first frequency. The system also includes a power converter configured to produce a power signal that at least partially corresponds to the second frequency. The system further comprises an analog-to-digital converter (ADC) configured to sample and convert analog voltages at the first frequency. The ADC is powered by the power signal.
Abstract:
An integrated circuit (IC) that includes a circuit substrate having a front side surface and an opposite back side surface. Active circuitry is located on the front side surface. An inductive structure is located within a deep trench formed in the circuit substrate below the backside surface. The inductive structure is coupled to the active circuitry.
Abstract:
A transducer has an input and produces a mechanical output, wherein the magnitude of the mechanical output of the transducer is dependent on the frequency and magnitude of current at the input. A driver for the transducer includes a device having a transfer function associated with the device, the device having a device input and a device output, the device output being connectable to the input of the transducer and the device input being connectable to a power source. The device attenuates the current output at a frequency that causes a peak in the magnitude of the mechanical output of the transducer.