Abstract:
A security and economy coordinated automatic voltage control method based on a cooperative game theory is provided. The method includes: establishing a multi-objective reactive voltage optimizing model of a power system; resolving the multi-objective reactive voltage optimizing model into an economy model and a security model; solving the economy model and the security model based on the cooperative game theory to obtain the automatic voltage control instruction; and performing an automatic voltage control for the power system according to the automatic voltage control instruction.
Abstract:
The present disclosure provides a method for optimizing transformation of automation equipment in a power distribution network based on reliability, including determining installation states of respective components in the power distribution network and operation criterions for fault isolation, load transfer and fault recovery after a fault occurred in a feeder segment; determining a target function which is a target function for minimizing a total transformation cost of the power distribution network; determining constraint conditions including reliability constraints; establishing an optimization model for evaluating the reliability of the power distribution network based on the reliability constraints in accordance with the target function and the constraints; and solving the established optimization model for evaluating the reliability of the power distribution network based on the reliability constraints to obtain optimal solutions as optimization results of the automation transformation state of the circuit breaker and the switch and the reliability index.
Abstract:
The disclosure relates to a two-side stochastic dispatching method for a power grid. By analyzing historical data of wind power, the Gaussian mixture distribution is fitted by software. For certain power system parameters, a two-side chance-constrained stochastic dispatching model is established. The hyperbolic tangent function is used to analyze and approximate cumulative distribution functions of random variables in the reserve demand constraint and the power flow constraint, to convert the two-side chance constraint into a deterministic constraint. The disclosure can have the advantage of using the hyperbolic tangent function to convert the two-side chance constraint containing risk levels and random variables into the solvable deterministic convex constraint, effectively improving the solution efficiency of the model, and providing decision makers with a more reasonable dispatching basis.
Abstract:
A method and a device for estimating a state of a power system are provided. The method includes: dividing the power system into a plurality of sub-systems; establishing a first linear model of the power system for a first stage; solving the first linear model by an alternating direction multiplier method to obtain the intermediate state variables of each sub-system; performing a nonlinear transformation at a second stage on the intermediate state variables to obtain intermediate measured values; establishing a second linear model of the power system for a third stage according to the intermediate measured values; and solving the third linear model by the alternating direction multiplier method to obtain the final state variables of each sub-system.
Abstract:
A method and a device for controlling a local voltage are provided. The method includes: obtaining a first voltage value of a high-voltage side bus in a local transformer substation; determining a control strategy according to a starting threshold value for a voltage enhancement control, a starting threshold value for an under-voltage load shedding and the first voltage value of the high-voltage side bus; and performing the control strategy to control a charging power of an electric vehicle charging station corresponding to the local transformer substation, so as to control the local voltage of the local transformer substation.
Abstract:
A method for obtaining a three-phase power flow of a power distribution network and a device for obtaining a three-phase power flow of a power distribution network are provided. The method includes steps of: selecting a three-phase power transformer in the power distribution network and configuring a secondary side of the three-phase power transformer with an ungrounded neutral connection, such that the three-phase power transformer satisfies a preset voltage-current relationship; adding a constraint condition to the preset voltage-current relationship to correct a three-phase admittance matrix of the three-phase power transformer; and applying the three-phase admittance matrix to a preset algorithm to obtain a three-phase power flow of the power distribution network.
Abstract:
A method and a device for charging an electric vehicle in a power system are provided. The method includes: obtaining a plurality of electric vehicles connected to the power system at a dispatching time, and obtaining a rated charging power and a charging requirement at the dispatching time; determining a charging period corresponding to the plurality of electric vehicles; determining a forecast period, and obtaining a charging requirement, a remaining charging energy capacity and a maximum charging power; establishing a charging model of the plurality of electric vehicles, establishing a first constraint of the charging model, and establishing a second constraint of the charging model; and solving the charging model under the first constraint and the second constraint to obtain an optimal charging power of each electric vehicle at each charging time in the charging period so as to charge each electric vehicle under the optimal charging power.
Abstract:
A method and a device for identifying a feasibility of a transmission interface constraint in an online rolling dispatching are provided. The method comprises: S1, establishing an online rolling dispatching model including a transmission interface constraint; S2, establishing a Lagrangian relaxation dual problem of the online rolling dispatching model; and S3, identifying a feasibility of the transmission interface constraint by solving the Lagrangian relaxation dual proble
Abstract:
A method and a device for navigating an electric vehicle in charging are provided. The method comprises: S1, obtaining a navigation area, wherein the navigation area comprises a plurality of charging stations; S2, receiving a charging request from an electric vehicle in the navigation area; S3, obtaining a plurality of first time periods according to the electric vehicle and the plurality of charging stations; S4, selecting a minimum first time period from the plurality of first time periods; and S5, navigating the electric vehicle to a charging station corresponding to the minimum first time period.
Abstract:
The disclosure provides power distribution network reliability index calculation method based on mixed integer linear programming. The method includes: establishing a model for optimizing reliability indexes of a power distribution network based on a mixed integer linear programming model, wherein the model comprises an objective function and constraint conditions, the objective function is for minimizing a system average interruption duration index (SAIDI); solving the model based on the objective function and the constraint conditions to obtain reliability indexes of the power distribution network; and controlling operation of the power distribution network based on the reliability indexes.