Abstract:
The semiconductor device includes a substrate, an epi-layer, a first etch stop layer, an interlayer dielectric (ILD) layer, a second etch stop layer, a protective layer, a liner, a silicide cap and a contact plug. The substrate has a first portion and a second portion. The epi-layer is disposed in the first portion. The first etch stop layer is disposed on the second portion. The ILD layer is disposed on the first etch stop layer. The second etch stop layer is disposed on the ILD layer, in which the first etch stop layer, the ILD layer and the second etch stop layer form a sidewall surrounding the first portion. The protective layer is disposed on the sidewall. The liner is disposed on the protective layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the liner.
Abstract:
A device includes an isolation structure, a source/drain epi-layer, a contact, a first dielectric layer, and a second dielectric layer. The isolation structure is embedded in a substrate. The source/drain epi-layer is embedded in the substrate and is in contact with the isolation structure. The contact is over the source/drain epi-layer. The first dielectric layer wraps the contact. The second dielectric layer is between the contact and the first dielectric layer. The first and second dielectric layers include different materials, and a portion of the source/drain epi-layer is directly between a bottom portion of the second dielectric layer and a top portion of the isolation structure.
Abstract:
A semiconductor device includes an active area having source and drain regions and a channel region between the source and drain regions, an isolation structure surrounding the active area, and a gate structure over the channel region of the active area and over the isolation structure, wherein the isolation structure has a first portion under the gate structure and a second portion free from coverage by the gate structure, and a top of the first portion of the isolation structure is lower than a top of the second portion of the isolation structure.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The gate stack includes a gate dielectric layer and a work function layer. The gate dielectric layer is between the semiconductor substrate and the work function layer. The semiconductor device structure also includes a halogen source layer. The gate dielectric layer is between the semiconductor substrate and the halogen source layer.
Abstract:
A method of manufacturing a semiconductor device includes forming a first transistor structure and a second transistor structure on a substrate, wherein source/drain structures of the first transistor structure and the second transistor structure are merged. The first and second transistor structures are separated by etching the source/drain structures.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first source region, a second source region, a first drain region, and a second drain region. The semiconductor device structure includes a first gate structure over the substrate and between the first source region and the first drain region. The semiconductor device structure includes a second gate structure over the substrate and between the second source region and the second drain region. A first thickness of the first gate structure is greater than a second thickness of the second gate structure. A first gate width of the first gate structure is less than a second gate width of the second gate structure.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first source region, a second source region, a first drain region, and a second drain region. The semiconductor device structure includes a first gate structure over the substrate and between the first source region and the first drain region. The semiconductor device structure includes a second gate structure over the substrate and between the second source region and the second drain region. A first thickness of the first gate structure is greater than a second thickness of the second gate structure. A first gate width of the first gate structure is less than a second gate width of the second gate structure.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate, an interfacial layer formed over the substrate, and an insertion layer formed over the interfacial layer. The semiconductor structure further includes a gate dielectric layer formed over the insertion layer and a gate structure formed over the gate dielectric layer. The insertion layer and the gate dielectric layer may be metal oxides where the insertion layer has an oxygen coordination number greater than the gate dielectric layer.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a gate structure formed over the substrate. The gate structure includes a gate dielectric layer formed over the substrate and a capping layer formed over the gate dielectric layer. The gate structure further includes a capping oxide layer formed over the capping layer and a work function metal layer formed over the capping oxide layer. The gate structure further includes a gate electrode layer formed over the work function metal layer.
Abstract:
A semiconductor device includes a substrate, first strain-inducing source and drain structures, a first gate structure, a first channel region, second strain-inducing source and drain structures, a second gate structure, and a second channel region. At least one of the first strain-inducing source and drain structures has a first proximity to the first channel region. At least one of the second strain-inducing source and drain structures has a second proximity to the second channel region. The second proximity is different from the first proximity.