Abstract:
In a scroll compressor, an outer wall curve of a scroll lap of a fixed scroll and an inner wall curve of a scroll lap of an orbiting scroll are formed of involute curves whose basic circle radius is defined as “a”, an inner wall curve of the scroll lap of the fixed scroll and an outer wall curve of the scroll lap of the orbiting scroll are formed of involute curves whose basic circle radius is defined as “b”, and a value of a/b which is a ratio of the basic circle radius a and the basic circle radius b is set to a value exceeding 1.0 and less than 1.5. With this structure, a compression chamber formed on the side of the inner wall of the scroll lap of the orbiting scroll is compressed faster than a compression chamber formed on the side of the outer wall of the scroll lap of the orbiting scroll, and leakage loss during compression process can be reduced.
Abstract:
In a scroll compressor, an outer wall curve of a scroll lap of a fixed scroll and an inner wall curve of a scroll lap of an orbiting scroll are formed of involute curves whose basic circle radius is defined as “a”, an inner wall curve of the scroll lap of the fixed scroll and an outer wall curve of the scroll lap of the orbiting scroll are formed of involute curves whose basic circle radius is defined as “b”, and a value of a/b which is a ratio of the basic circle radius a and the basic circle radius b is set to a value exceeding 1.0 and less than 1.5. With this structure, a compression chamber formed on the side of the inner wall of the scroll lap of the orbiting scroll is compressed faster than a compression chamber formed on the side of the outer wall of the scroll lap of the orbiting scroll, and leakage loss during compression process can be reduced.
Abstract:
There is provided a molding method for performing injection molding by using a multi-cavity hot-runner mold having a plurality of valve gates, wherein a proper holding pressure and the like are set for each cavity, a pressure holding step can be carried out, a plurality of products having an appearance free from such a defect as a sink mark can be obtained, the pressure in the cavity can be reduced by a gas pressure, and a necessary mold clamping force can be decreased. A valve for a first cavity is closed after the filling into the first cavity is finished, and a valve for a second cavity is concurrently opened to perform the filling into the second cavity. When injection is effected into each cavity in succession, a gas is injected into the filled resin, thereby to carry out a pressure holding step. The same pressure holding step is carried out for a third cavity and the succeeding cavities. As a result, a plurality of products having an appearance free from such a defect as a sink mark can be obtained. Also, the pressure in the cavity can be reduced by a gas pressure, and a required mold clamping force can be decreased.
Abstract:
An output circuit of a solid-state imaging device has been improved. The output circuit receives a plurality of pixel signals in a dummy bit portion, an optical black portion and an effective pixel portion from a charge transfer device of the solid-state imaging device. The output circuit includes: a clamp circuit for clamping to a predetermined voltage a feedthrough level in a feedthrough period of each pixel signal output from a charge transfer device of the solid-state imaging device; a main sampling and holding circuit for sampling a signal level in a signal period of each pixel signal output from the clamp circuit and holding the signal level; a sub sampling and holding circuit for sampling an optical black level in a signal period of each pixel signal in the optical black portion output from the clamp circuit and holding the optical black level; a synchronous sampling and holding circuit for sampling the optical black level output from the sub sampling and holding circuit at a timing identical to that of the main sampling and holding circuit and holding the optical black level; and an arithmetic circuit for calculating the difference between the signal level output from the main sampling and holding circuit and the optical black level output from the synchronous sampling and holding circuit.
Abstract:
Disclosed is a membrane electrode assembly provided with a polymer electrolyte membrane; a catalyst layer (A) which is laminated onto one surface of the polymer electrolyte membrane; a gas diffusion layer (A) which is laminated onto the catalyst layer (A); a catalyst layer (B); and a gas diffusion layer (B). The outer circumferential section of the catalyst layer (A) is the membrane electrode assembly with an integrated frame which comprises a membrane electrode assembly that protrudes from the gas diffusion layer (A) and a frame adhered to the outer circumferential section of the catalyst layer (A), whereby said frame surrounds the edge of the membrane electrode assembly. The surface that is adhered to the frame in the outer circumferential section of the catalyst layer (A) comprises a plurality of cracks.
Abstract:
An object of the present invention is to provide a drug having the inhibitory activity on ENPP2 which is a different target from that of the existing drug, as a medicament useful in a urinary excretion disorder patient for whom the existing drug has the insufficient effect.The present invention provides a compound represented by the general formula (I): (wherein definition of each group is as defined in the description) having the ENPP2 inhibitory activity, a salt thereof or a solvate thereof or a prodrug thereof, and an agent for preventing or treating urinary excretion disorder and/or improving symptoms thereof, containing them as an active ingredient.
Abstract:
A scroll compressor includes a back pressure chamber oil-feeding path for feeding lubricating oil from a high-pressure region to a back pressure chamber, and a compression chamber oil-feeding path for feeding lubricating oil from the back pressure chamber to a compression chamber. One phase in which the back pressure chamber oil-feeding path is communicated from the high-pressure region to the back pressure chamber and another phase in which the compression chamber oil-feeding path is communicated from the back pressure chamber to the compression chamber are shifted from each other, so that the back pressure chamber oil-feeding path and the compression chamber oil-feeding path are never put into the communicating state simultaneously. Thus, after a halt of the compressor, under-communication oil-feeding of the lubricating oil from the high-pressure region via the back pressure chamber to the compression chamber can be prevented.
Abstract:
A close attachment region is provided on the outer side relative to an outer edge portion of a gas diffusion layer and on the inner side relative to the inner edge portion of a gasket as seen from the thickness direction of a polymer electrolyte membrane, such that separators and a frame member are closely attached to each other. Thus, it becomes possible to suppress an increase in the manufacturing cost and a reduction in the power generation performance, which is attributed to the impurity eluted from the gasket and flowing toward the gas diffusion layer.
Abstract:
A fuel cell separator pair has first and second separators having front and back surfaces, a corrugated plate portion shaped in a wave form at the central portion, and a flat plate portion formed in the peripheral portion and surrounding the corrugated plate portion, wherein the corrugated plate portion of the front surface constitutes a reaction gas channel and the corrugated plate portion of the back surface constitutes a coolant channel. The back surfaces of the first and second separators are facing each other. The flat plate portions of the first and second separators are arranged on top of each other so as to be in contact with each other. The flat plate portion of the second separator protrudes toward the outside beyond the flat plate portion of the first separator. The fuel cell separator pair has a seal member (A) disposed on the flat plate portion of the front surface of the first separator, a seal member (B) disposed on the flat plate portion of the front surface of the second separator, and a seal member (C) disposed on the region protruding beyond the flat plate portion of the first separator in the flat plate portion of the back surface of the second separator.
Abstract:
An integrated circuit is provided with a substrate, an electrode, two diffusion areas, and a resistance heater. The substrate includes a first surface and second surface that are substantially parallel to each other. The electrode is laminated onto the first surface. The two diffusion areas are disposed within the substrate in the vicinity of the electrode to form one transistor with the electrode. The resistance heater is located on an area of the second surface across the substrate from the electrode. The resistance heater produces heat by allowing electric current to flow.