摘要:
A bipolar plate for a fuel cell is provided that includes a flowfield having an active surface with an inlet region and an outlet region. The active surface of the flowfield is in communication with the inlet region and the outlet region and has at least one flow channel formed therein. The at least one flow channel further has a cross-sectional area at the outlet region that is less than a cross-sectional area at the inlet region. In particular embodiments, the at least one flow channel is bifurcated. A fuel cell stack including a fuel cell and the bipolar plate is also provided.
摘要:
A fuel cell stack is disclosed that utilizes a porous material internally disposed in the fuel cell outlet manifolds, wherein the porous material facilitates the transport of liquid water from the plate outlets thereby minimizing the accumulation of liquid water in the fuel cell stack.
摘要:
Fuel cell bipolar plates are made by depositing a pinhole free corrosion resistant and/or a conductive layer on a metal plate using an atomic layer deposition method. In one embodiment, a conductive layer is deposited on an anodized metal plate using atomic layer deposition method. In another embodiment, at least one corrosion resistant metal oxide layer and at least one conductive layer are deposited on a metal plate individually using atomic layer deposition method. In yet another embodiment, a corrosion resistant and conductive metal oxynitride layer is deposited on a metal plate using an atomic layer deposition method.
摘要:
A fuel cell stack assembly is disclosed that includes a porous member disposed within a flow path for a reactant. A fluid collection member is provided within the flow path adjacent to and in fluid communication with the porous member. The porous member and the fluid collection member cooperate to collect liquid water from the reactant flowing in the flow path, wherein the collected liquid water may be drained from the fluid collection member.
摘要:
A fuel cell assembly is disclosed that utilizes a water transport structure extending from fuel cell plates of the assembly into fuel cell assembly manifolds, wherein the water transport structure facilitates the transport of liquid water from the fuel cell plates thereby minimizing the accumulation of liquid water and ice in the fuel cell stack.
摘要:
A flow field plate or bipolar plate for a fuel cell that includes a combination of TiO2 and a conductive material that makes the bipolar plate conductive, hydrophilic and stable in the fuel cell environment. The TiO2 and the conductive material can be deposited on the plate as separate layers or can be combined as a single layer. Either the TiO2 layer or the conductive layer can be deposited first. In one embodiment, the conductive material is gold.
摘要翻译:一种用于燃料电池的流场板或双极板,其包括TiO 2和导电材料的组合,使得双极板在燃料电池环境中导电,亲水和稳定。 TiO 2和导电材料可以作为单独的层沉积在板上,或者可以作为单层组合。 首先可以沉积TiO 2层或导电层。 在一个实施例中,导电材料是金。
摘要:
A bipolar plate includes angled facets oriented to form V-shaped projections on the plate edge. Liquid leaving the reactant channels is drawn back into the V-shaped grooves of the projections, leaving no liquid to obstruct the channel exit openings. The bipolar plate includes one portion of the bipolar plate offset from another portion of the bipolar plate so as to expose the reactant channels. The liquid is drawn toward the end portions of the reactant channels by capillary forces, while the gas flows can exit near the beginning of the offset portion. A fuel cell stack includes angled facets that are rotated to lie in the plane of the bipolar plate edges. The edges are chamfered so the channel exit openings of the reactant channels are at the tip portions thereof, thus allowing the liquid to flow away from the channel exit openings and the gas to exit freely.
摘要:
A bi-polar plate is provided for a fuel cell stack. The bi-polar plate has improved surface wettability. The bi-polar plate includes a body including at least approximately ninety percent by weight of a metal and defining at least one flow channel. At least about 0.05 percent and up to 100 percent by weight of silicon is disposed on a surface of the at least one flow channel to form a high energy surface to form a high energy surface for the bi-polar plate. This can be achieved by adding from 0.5 to 10 weight % silicon to the steel. The percent of silicon is pre-determined based on a desired wettability of the high energy surface of the at least one flow channel.