Abstract:
A process for operating a reforming reactor system comprising operating a plurality of reactors until at least one reactor is deemed to have an operational issue, wherein each of the plurality of reactors contains a catalyst capable of converting at least a portion of a hydrocarbon stream to aromatic hydrocarbons, isolating the at least one reactor deemed to have the operational issue from a remaining plurality of reactors that continue to operate to convert at least the portion of the hydrocarbon stream to aromatic hydrocarbons while the at least one reactor deemed to have the operational issue is isolated from the plurality of remaining reactors, addressing the operational issues, returning the at least one reactor to the hydrocarbon stream by connecting the reactor to the remaining plurality of reactors, and resuming operations of the reforming reactor system to convert at least the portion of the hydrocarbon stream to aromatic hydrocarbons.
Abstract:
A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of extending the life of an aromatization catalyst comprising predicting a rapid deactivation threshold (RDT) for an aromatization reactor by employing the catalyst in a reactor system under an accelerated fouling condition to identify a test rapid deactivation threshold (t-RDT), predicting the RDT for the aromatization reactor based upon the t-RDT, and oxidizing the catalyst prior to the predicted RDT to extend the Time on Stream of the aromatization catalyst.
Abstract:
A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.
Abstract:
A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A method of selectively hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting the highly unsaturated hydrocarbon with a selective hydrogenation catalyst composition produced by contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
Abstract:
A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted with a liquid composition comprising an iodide component such as ammonium iodide, and the catalyst is then calcined. An improved process for hydrogenation, especially selectively hydrogenating acetylene (to ethylene), using this improved catalyst composition with improved conversion and deactivation.
Abstract:
A solid combination of elemental sulfur and an inorganic support material prepared in an inert atmosphere to provide a composition for absorbing trialkyl arsines. The composition prepared thereby and the method for absorbing trialkyl arsines using the composition.
Abstract:
A catalyst composition containing a zeolite and platinum, and a method of preparing such catalyst composition, are disclosed. The thus-obtained catalyst composition is employed in the conversion of a hydrocarbon to aromatics.
Abstract:
A process of making a metal aluminate catalyst support by incorporating, preferably impregnating, alumina, preferably gamma alumina, with a metal component to thereby provide a metal-incorporated alumina which is then calcined under a calcining condition to thereby provide a metal aluminate catalyst support. Such calcining condition includes a temperature in the range of from about 600° C. to about 1350° C. Preferably the metal component has been melted under a melting condition to thereby provide a melted metal component.
Abstract:
A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A method of selectively hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting the highly unsaturated hydrocarbon with a selective hydrogenation catalyst composition produced by contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
Abstract:
A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.