Abstract:
A semiconductor structure, including a substrate and multiple chips, is provided. The chips are stacked on the substrate. Each of the chips has a first side and a second side opposite to each other. Each of the chips includes a transistor adjacent to the first side and a storage node adjacent to the second side. Two adjacent chips are bonded to each other. The transistor of one of the two adjacent chips is electrically connected to the storage node of the other one of the two adjacent chips to form a memory cell.
Abstract:
A semiconductor structure, including a substrate and multiple chips, is provided. The chips are stacked on the substrate. Each of the chips has a first side and a second side opposite to each other. Each of the chips includes a transistor adjacent to the first side and a storage node adjacent to the second side. Two adjacent chips are bonded to each other. The transistor of one of the two adjacent chips is electrically connected to the storage node of the other one of the two adjacent chips to form a memory cell.
Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
A TSV structure includes a substrate comprising at least a TSV opening formed therein, a conductive layer disposed in the TSV opening, and a bi-layered liner disposed in between the substrate and the conductive layer. More important, the bi-layered liner includes a first liner and a second liner, and a Young's modulus of the first liner is different from a Young's modulus of the second liner.
Abstract:
A method of programming an anti-fuse includes steps as follows. First, an insulating layer is provided. An anti-fuse region is defined on the insulating layer. An anti-fuse is embedded within the anti-fuse region of the insulating layer. The anti-fuse includes at least a first conductor and a second conductor. Then, part of the insulating layer is removed by a laser to form an anti-fuse opening in the insulating layer. Part of the first conductor and part of the second conductor are exposed through the anti-fuse opening. After that, a under bump metallurgy layer is formed in the anti-fuse opening to connect the first conductor and the second conductor electrically.
Abstract:
A substrate with integrated passive devices and method of manufacturing the same are presented. The substrate may include through silicon vias, at least one redistribution layer having a 1st passive device pattern and stacked vias, and an under bump metal layer having a 2nd passive device pattern.