Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
Provided are a semiconductor structure and a manufacturing method thereof. The manufacturing method of the semiconductor structure includes the following. A gate structure is formed on a substrate. A tilt implanting process is performed to implant group IV elements into the substrate to form a doped region, and the doped region is located on two sides of the gate structure and partially located under the gate structure. A part of the substrate on two sides of the gate structure is removed to form a first recess. A cleaning process is performed on the surface of the first recess. A wet etching process is performed on the first recess to form a second recess. A semiconductor layer is formed in the second recess.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A patterned mask layer is formed on a semiconductor substrate. An isolation trench is formed in the semiconductor substrate by removing a part of the semiconductor substrate. A liner layer is conformally formed on an inner sidewall of the isolation trench. An implantation process is performed to the liner layer. The implantation process includes a noble gas implantation process. An isolation structure is at least partially formed in the isolation trench after the implantation process. An etching process is performed to remove the patterned mask layer after forming the isolation structure and expose a top surface of the semiconductor substrate. A part of the liner layer formed on the inner sidewall of the isolation trench is removed by the etching process. The implantation process is configured to modify the etch rate of the liner layer in the etching process.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A patterned mask layer is formed on a semiconductor substrate. An isolation trench is formed in the semiconductor substrate by removing a part of the semiconductor substrate. A liner layer is conformally formed on an inner sidewall of the isolation trench. An implantation process is performed to the liner layer. The implantation process includes a noble gas implantation process. An isolation structure is at least partially formed in the isolation trench after the implantation process. An etching process is performed to remove the patterned mask layer after forming the isolation structure and expose a top surface of the semiconductor substrate. A part of the liner layer formed on the inner sidewall of the isolation trench is removed by the etching process. The implantation process is configured to modify the etch rate of the liner layer in the etching process.
Abstract:
A semiconductor device is disclosed. The semiconductor device comprises a substrate, a gate structure disposed on the substrate, a spacer disposed on the substrate and covering a sidewall of the gate structure, an air gap sandwiched between the spacer and the substrate, and a source/drain region disposed in the substrate and having a faceted surface exposed from the substrate, wherein the faceted surface borders the substrate on a boundary between the air gap and the substrate.
Abstract:
A semiconductor device comprises at least one gate structure disposed on a substrate; a first dielectric layer disposed on the substrate and contacting an outer sidewall of the at least one gate structure; a second dielectric layer having a L shape disposed on the first dielectric layer and contacting the outer sidewall of the at least one gate structure; an etch stop layer contacting the second dielectric layer, the first dielectric layer and the substrate, wherein the second dielectric layer has an upper portion and a lower portion contacting the upper portion, the upper portion extends along the outer sidewall, the lower portion extends from the outer sidewall to the etch stop layer; and an air gap between the second dielectric layer and the etch stop layer; wherein the first dielectric layer and the lower portion of the second dielectric layer have a same width.
Abstract:
A method of forming a gate structure on a fin structure includes the steps of providing a fin structure covered by a first silicon oxide layer, a silicon nitride layer, a gate material and a cap material in sequence, wherein the silicon nitride layer contacts the first silicon oxide layer. Later, the cap material is patterned to form a first cap layer and the gate material is patterned to form a first gate electrode by taking the silicon nitride layer as an etching stop layer. Then, the silicon nitride layer not covered by the first gate electrode is removed to expose part of the first silicon oxide layer. Finally, a first dielectric layer is formed to conformally cover the first silicon oxide layer, the first gate electrode and the first cap layer.
Abstract:
A method for processing a semiconductor device is provided. The semiconductor device includes a protruding structure on a substrate, the protruding structure having a nitride spacer at a sidewall, and an epitaxial layer is formed in the substrate adjacent to the protruding structure. The method includes removing the nitride spacer on the protruding structure. Then, a dilute hydrofluoric (DHF) cleaning process is performed over the substrate, wherein a top surficial portion of the epitaxial layer is removed. A standard clean (SC) process is performed over the substrate, wherein a native oxide layer is formed on an expose surface of the epitaxial layer.